292,331 research outputs found
The second cohomology of sl(m|1) with coefficients in its enveloping algebra is trivial
Using techniques developed in a recent article by the authors, it is proved
that the 2-cohomology of the Lie superalgebra sl(m|1); m > 1, with coefficients
in its enveloping algebra is trivial. The obstacles in solving the analogous
problem for sl(3|2) are also discussed.Comment: 15 pages, Latex, no figure
Bott - Borel - Weil Construction For Quantum Supergroup Uq(gl(m|n))
The finite dimensional irreducible representations of the quantum supergroup
are constructed geometrically using techniques from the Bott -
Borel - Weil theory and vector coherent states.Comment: Latex, 22 page
A Lattice Study of the Glueball Spectrum
Glueball spectrum is studied using an improved gluonic action on asymmetric
lattices in the pure SU(3) gauge theory. The smallest spatial lattice spacing
is about which makes the extrapolation to the continuum limit more
reliable. In particular, attention is paid to the scalar glueball mass which is
known to have problems in the extrapolation. Converting our lattice results to
physical units using the scale set by the static quark potential, we obtain the
following results for the glueball masses: for the
scalar glueball mass and for the tensor glueball.Comment: 10 pages, 2 figures,typos correcte
Optimal provision of distributed reserves under dynamic energy service preferences
We propose and solve a stochastic dynamic programming (DP) problem addressing the optimal provision of regulation service reserves (RSR) by controlling dynamic demand preferences in smart buildings. A major contribution over past dynamic pricing work is that we pioneer the relaxation of static, uniformly distributed utility of demand. In this paper we model explicitly the dynamics of energy service preferences leading to a non-uniform and time varying probability distribution of demand utility. More explicitly, we model active and idle duty cycle appliances in a smart building as a closed queuing system with price-controlled arrival rates into the active appliance queue. Focusing on cooling appliances, we model the utility associated with the transition from idle to active as a non-uniform time varying function. We (i) derive an analytic characterization of the optimal policy and the differential cost function, and (ii) prove optimal policy monotonicity and value function convexity. These properties enable us to propose and implement a smart assisted value iteration (AVI) algorithm and an approximate DP (ADP) that exploits related functional approximations. Numerical results demonstrate the validity of the solution techniques and the computational advantage of the proposed ADP on realistic, large-state-space problems
Probing the birth of fast rotating magnetars through high-energy neutrinos
We investigate the high-energy neutrino emission expected from newly born
magnetars surrounded by their stellar ejecta. Protons might be accelerated up
to 0.1-100 EeV energies possibly by, e.g., the wave dissipation in the winds,
leading to hadronic interactions in the stellar ejecta. The resulting PeV-EeV
neutrinos can be detected by IceCube/KM3Net with a typical peak time scale of a
few days after the birth of magnetars, making the characteristic soft-hard-soft
behavior. Detections would be important as a clue to the formation mechanism of
magnetars, although there are ambiguities coming from uncertainties of several
parameters such as velocity of the ejecta. Non-detections would also lead to
useful constraints on the scenario.Comment: 5 pages, 3 figures, accepted for publication in PR
- …