181,711 research outputs found

    Magnetoresistance Oscillations in Two-dimensional Electron Systems Induced by AC and DC Fields

    Full text link
    We report on magnetotransport measurements in a high-mobility two-dimentional electron system subject simultaneously to AC (microwave) and DC (Hall) fields. We find that DC excitation affects microwave photoresistance in a nontrivial way. Photoresistance maxima (minima) evolve into minima (maxima) and back, reflecting strong coupling and interplay of AC- and DC-induced effects. Most of our observations can be explained in terms of indirect electron transitions using a new, ``combined'' resonant condition. Observed quenching of microwave-induced zero resistance by a DC field cannot be unambiguously linked to a domain model, at least until a systematic theory treating both excitation types within a single framework is developed

    Effective nucleon-nucleon interactions and nuclear matter equation of state

    Get PDF
    Nuclear matter equations of state based on Skyrme, Myers-Swiatecki and Tondeur interactions are written as polynomials of the cubic root of density, with coefficients that are functions of the relative neutron excess δ\delta. In the extrapolation toward states far away from the standard one, it is shown that the asymmetry dependence of the critical point (ρc,δc\rho_c, \delta_c) depends on the model used. However, when the equations of state are fitted to the same standard state, the value of δc\delta_c is almost the same in Skyrme and in Myers-Swiatecki interactions, while is much lower in Tondeur interaction. Furthermore, δc\delta_c does not depend sensitively on the choice of the parameter γ\gamma in Skyrme interaction.Comment: 15 pages, 9 figure

    Delocalization of Wannier-Stark ladders by phonons: tunneling and stretched polarons

    Full text link
    We study the coherent dynamics of a Holstein polaron in strong electric fields. A detailed analytical and numerical analysis shows that even for small hopping constant and weak electron-phonon interaction, polaron states can become delocalized if a resonance condition develops between the original Wannier-Stark states and the phonon modes, yielding both tunneling and `stretched' polarons. The unusual stretched polarons are characterized by a phonon cloud that {\em trails} the electron, instead of accompanying it. In general, our novel approach allows us to show that the polaron spectrum has a complex nearly-fractal structure, due to the coherent coupling between states in the Cayley tree which describes the relevant Hilbert space. The eigenstates of a finite ladder are analyzed in terms of the observable tunneling and optical properties of the system.Comment: 7 pages, 4 figure

    Nuclear matter properties and relativistic mean-field theory

    Get PDF
    Nuclear matter properties are calculated in the relativistic mean field theory by using a number of different parameter sets. The result shows that the volume energy a1a_1 and the symmetry energy JJ are around the acceptable values 16MeV and 30MeV respectively; the incompressibility K0K_0 is unacceptably high in the linear model, but assumes reasonable value if nonlinear terms are included; the density symmetry LL is around 100MeV100MeV for most parameter sets, and the symmetry incompressibility KsK_s has positive sign which is opposite to expectations based on the nonrelativistic model. In almost all parameter sets there exists a critical point (ρc,δc)(\rho_c, \delta_c), where the minimum and the maximum of the equation of state are coincident and the incompressibility equals zero, falling into ranges 0.014fm3<ρc<0.039^{-3}<\rho_c<0.039fm3^{-3} and 0.74<δc0.950.74<\delta_c\le0.95; for a few parameter sets there is no critical point and the pure neutron matter is predicted to be bound. The maximum mass MNSM_{NS} of neutron stars is predicted in the range 2.45MMNS3.26_\odot\leq M_{NS}\leq 3.26M_\odot, the corresponding neutron star radius RNSR_{NS} is in the range 12.2kmRNS15.1\leq R_{NS}\leq 15.1km.Comment: 10 pages, 5 figure

    Resonant Phonon Scattering in Quantum Hall Systems Driven by dc Electric Fields

    Full text link
    Using dc excitation to spatially tilt Landau levels, we study resonant acoustic phonon scattering in two-dimensional electron systems. We observe that dc electric field strongly modifies phonon resonances, transforming resistance maxima into minima and back into maxima. Further, phonon resonances are enhanced dramatically in the non-linear dc response and can be detected even at low temperatures. Most of our observations can be explained in terms of dc-induced (de)tuning of the resonant acoustic phonon scattering and its interplay with intra-Landau level impurity scattering. Finally, we observe a dc-induced zero-differential resistance state and a resistance maximum which occurs when the electron drift velocity approaches the speed of sound.Comment: 4 pages, 4 figures, to appear in Phys. Rev. Let

    Symmetry breaking as the origin of zero-differential resistance states of a 2DEG in strong magnetic fields

    Full text link
    Zero resistance differential states have been observed in two-dimensional electron gases (2DEG) subject to a magnetic field and a strong dc current. In a recent work we presented a model to describe the nonlinear transport regime of this phenomenon. From the analysis of the differential resistivity and the longitudinal voltage we predicted the formation of negative differential resistivity states, although these states are known to be unstable. Based on our model, we derive an analytical approximated expression for the Voltage-Current characteristics, that captures the main elements of the problem. The result allow us to construct an energy functional for the system. In the zero temperature limit, the system presents a quantum phase transition, with the control parameter given by the magnetic field. It is noted that above a threshold value (B>BthB>B_{th}), the symmetry is spontaneously broken. At sufficiently high magnetic field and low temperature the model predicts a phase with a non-vanishing permanent current; this is a novel phase that has not been observed so far.Comment: 6 pages, 2 figure

    Rotation intrinsic spin coupling--the parallelism description

    Get PDF
    For the Dirac particle in the rotational system, the rotation induced inertia effect is analogously treated as the modification of the "spin connection" on the Dirac equation in the flat spacetime, which is determined by the equivalent tetrad. From the point of view of parallelism description of spacetime, the obtained torsion axial-vector is just the rotational angular velocity, which is included in the "spin connection". Furthermore the axial-vector spin coupling induced spin precession is just the rotation-spin(1/2) interaction predicted by Mashhoon. Our derivation treatment is straightforward and simplified in the geometrical meaning and physical conception, however the obtained conclusions are consistent with that of the other previous work.Comment: 10 pages, no figur

    Quantum Mechanics of Dynamical Zero Mode in QCD1+1QCD_{1+1} on the Light-Cone

    Get PDF
    Motivated by the work of Kalloniatis, Pauli and Pinsky, we consider the theory of light-cone quantized QCD1+1QCD_{1+1} on a spatial circle with periodic and anti-periodic boundary conditions on the gluon and quark fields respectively. This approach is based on Discretized Light-Cone Quantization (DLCQ). We investigate the canonical structures of the theory. We show that the traditional light-cone gauge A=0A_- = 0 is not available and the zero mode (ZM) is a dynamical field, which might contribute to the vacuum structure nontrivially. We construct the full ground state of the system and obtain the Schr\"{o}dinger equation for ZM in a certain approximation. The results obtained here are compared to those of Kalloniatis et al. in a specific coupling region.Comment: 19 pages, LaTeX file, no figure
    corecore