246,767 research outputs found
Giant optical activity in dielectric planar metamaterials with 2D chirality
For the first time, all-dielectric planar chiral metamaterials consisting of arrays of silicon nitride gammadions on fused silica substrates have been fabricated, and shown to be capable of inducing large changes to the polarization states of transmitted light in a manner that is dependent on the two-dimensional chirality of the microstructured silicon nitride film. The polarization response is found to reverse for opposite enantiomers, and also for the same enantiomer when it is illuminated from opposite sides of the structure. In addition, the polarization states of the various diffracted beams are found to be non-reversible. These structures therefore appear to display elements of non-reciprocal behaviour. The polarization responses of complementary designs, different chiral geometries and various silicon nitride film thicknesses have also been studied. As a result we conclude that multiple reflections within the patterned silicon nitride layer play an important role in defining the mechanism by which these structures are able to modify the polarization states of diffracted light
Solid weak BCC-algebras
We characterize weak BCC-algebras in which the identity is
satisfied only in the case when elements belong to the same branch
Auxiliary-field quantum Monte Carlo study of first- and second-row post-d elements
A series of calculations for the first- and second-row post-d elements (Ga-Br
and In-I) are presented using the phaseless auxiliary-field quantum Monte Carlo
(AF QMC) method. This method is formulated in a Hilbert space defined by any
chosen one-particle basis, and maps the many-body problem into a linear
combination of independent-particle solutions with external auxiliary fields.
The phase/sign problem is handled approximately by the phaseless formalism
using a trial wave function, which in our calculations was chosen to be the
Hartree-Fock solution. We used the consistent correlated basis sets of Peterson
and coworkers, which employ a small core relativistic pseudopotential. The AF
QMC results are compared with experiment and with those from density-functional
(GGA and B3LYP) and coupled-cluster CCSD(T) calculations. The AF QMC total
energies agree with CCSD(T) to within a few milli-hartrees across the systems
and over several basis sets. The calculated atomic electron affinities,
ionization energies, and spectroscopic properties of dimers are, at large basis
sets, in excellent agreement with experiment.Comment: 10 pages, 2 figures. To be published in Journal of Chemical Physic
Radio-mode feedback in local AGNs: dependence on the central black hole parameters
Radio mode feedback, in which most of the energy of an active galactic
nucleus (AGN) is released in a kinetic form via radio-emitting jets, is thought
to play an important role in the maintenance of massive galaxies in the
present-day Universe. We study the link between radio emission and the
properties of the central black hole in a large sample of local radio galaxies
drawn from the Sloan Digital Sky Survey (SDSS), based on the catalogue of Best
and Heckman (2012). Our sample is mainly dominated by massive black holes
(mostly in the range ) accreting at very low Eddington
ratios (typically ). In broad agreement with previously
reported trends, we find that radio galaxies are preferentially associated with
the more massive black holes, and that the radio loudness parameter seems to
increase with decreasing Eddington ratio. We compare our results with previous
studies in the literature, noting potential biases. The majority of the local
radio galaxies in our sample are currently in a radiatively inefficient
accretion regime, where kinetic feedback dominates over radiative feedback. We
discuss possible physical interpretations of the observed trends in the context
of a two-stage feedback process involving a transition in the underlying
accretion modes.Comment: accepted for publication in Monthly Notices of the Royal Astronomical
Societ
Auxiliary-field quantum Monte Carlo calculations of molecular systems with a Gaussian basis
We extend the recently introduced phaseless auxiliary-field quantum Monte
Carlo (QMC) approach to any single-particle basis, and apply it to molecular
systems with Gaussian basis sets. QMC methods in general scale favorably with
system size, as a low power. A QMC approach with auxiliary fields in principle
allows an exact solution of the Schrodinger equation in the chosen basis.
However, the well-known sign/phase problem causes the statistical noise to
increase exponentially. The phaseless method controls this problem by
constraining the paths in the auxiliary-field path integrals with an
approximate phase condition that depends on a trial wave function. In the
present calculations, the trial wave function is a single Slater determinant
from a Hartree-Fock calculation. The calculated all-electron total energies
show typical systematic errors of no more than a few milli-Hartrees compared to
exact results. At equilibrium geometries in the molecules we studied, this
accuracy is roughly comparable to that of coupled-cluster with single and
double excitations and with non-iterative triples, CCSD(T). For stretched bonds
in HO, our method exhibits better overall accuracy and a more uniform
behavior than CCSD(T).Comment: 11 pages, 5 figures. submitted to JC
Finite temperature damping of collective modes of a BCS-BEC crossover superfluid
A new mechanism is proposed to explain the puzzling damping of collective
excitations, which was recently observed in the experiments of strongly
interacting Fermi gases below the superfluid critical temperature on the
fermionic (BCS) side of Feshbach resonance. Sound velocity, superfluid density
and damping rate are calculated with effective field theory. We find that a
dominant damping process is due to the interaction between superfluid phonons
and thermally excited fermionic quasiparticles, in contrast to the previously
proposed pair-breaking mechanism. Results from our effective model are compared
quantitatively with recent experimental findings, showing a good agreement.Comment: final version, 9 pages, 4 figure
A Multiperiod OPF Model Under Renewable Generation Uncertainty and Demand Side Flexibility
Renewable energy sources such as wind and solar have received much attention
in recent years and large amount of renewable generation is being integrated to
the electricity networks. A fundamental challenge in power system operation is
to handle the intermittent nature of the renewable generation. In this paper we
present a stochastic programming approach to solve a multiperiod optimal power
flow problem under renewable generation uncertainty. The proposed approach
consists of two stages. In the first stage operating points for conventional
power plants are determined. Second stage realizes the generation from
renewable resources and optimally accommodates it by relying on demand-side
flexibility. The benefits from its application are demonstrated and discussed
on a 4-bus and a 39-bus systems. Numerical results show that with limited
flexibility on the demand-side substantial benefits in terms of potential
additional re-dispatch costs can be achieved. The scaling properties of the
approach are finally analysed based on standard IEEE test cases upto 300 buses,
allowing to underlined its computational efficiency.Comment: 8 pages, 10 figure
The Central Engines of Gamma-Ray Bursts
Leading models for the "central engine" of long, soft gamma-ray bursts (GRBs)
are briefly reviewed with emphasis on the collapsar model. Growing evidence
supports the hypothesis that GRBs are a supernova-like phenomenon occurring in
star forming regions, differing from ordinary supernovae in that a large
fraction of their energy is concentrated in highly relativistic jets. The
possible progenitors and physics of such explosions are discussed and the
important role of the interaction of the emerging relativistic jet with the
collapsing star is emphasized. This interaction may be responsible for most of
the time structure seen in long, soft GRBs. What we have called "GRBs" may
actually be a diverse set of phenomena with a key parameter being the angle at
which the burst is observed. GRB 980425/SN 1988bw and the recently discovered
hard x-ray flashes may be examples of this diversity.Comment: 8 pages, Proc. Woods Hole GRB meeting, Nov 5 - 9 WoodsHole
Massachusetts, Ed. Roland Vanderspe
Bond breaking with auxiliary-field quantum Monte Carlo
Bond stretching mimics different levels of electron correlation and provides
a challenging testbed for approximate many-body computational methods. Using
the recently developed phaseless auxiliary-field quantum Monte Carlo (AF QMC)
method, we examine bond stretching in the well-studied molecules BH and N,
and in the H chain. To control the sign/phase problem, the phaseless AF
QMC method constrains the paths in the auxiliary-field path integrals with an
approximate phase condition that depends on a trial wave function. With single
Slater determinants from unrestricted Hartree-Fock (UHF) as trial wave
function, the phaseless AF QMC method generally gives better overall accuracy
and a more uniform behavior than the coupled cluster CCSD(T) method in mapping
the potential-energy curve. In both BH and N, we also study the use of
multiple-determinant trial wave functions from multi-configuration
self-consistent-field (MCSCF) calculations. The increase in computational cost
versus the gain in statistical and systematic accuracy are examined. With such
trial wave functions, excellent results are obtained across the entire region
between equilibrium and the dissociation limit.Comment: 8 pages, 3 figures and 3 tables. Submitted to JC
Yang-Mills condensate dark energy coupled with matter and radiation
The coincidence problem is studied for the dark energy model of effective
Yang-Mills condensate in a flat expanding universe during the matter-dominated
stage. The YMC energy is taken to represent the dark energy, which
is coupled either with the matter, or with both the matter and the radiation
components. The effective YM Lagrangian is completely determined by quantum
field theory up to 1-loop order. It is found that under very generic initial
conditions and for a variety of forms of coupling, the existence of the scaling
solution during the early stages and the subsequent exit from the scaling
regime are inevitable. The transition to the accelerating stage always occurs
around a redshift . Moreover, when the Yang-Mills
condensate transfers energy into matter or into both matter and radiation, the
equation of state of the Yang-Mills condensate can cross over -1 around
, and takes on a current value . This is consistent with
the recent preliminary observations on supernovae Ia. Therefore, the
coincidence problem can be naturally solved in the effective YMC dark energy
models.Comment: 24 pages, 18 figure
- …