90 research outputs found

    Magnetic-distortion-induced ellipticity and gravitational wave radiation of neutron stars: millisecond magnetars in short GRBs, Galactic pulsars, and magnetars

    Full text link
    Neutron stars may sustain a non-axisymmetric deformation due to magnetic distortion and are potential sources of continuous gravitational waves (GWs) for ground-based interferometric detectors. With decades of searches using available GW detectors, no evidence of a GW signal from any pulsar has been observed. Progressively stringent upper limits of ellipticity have been placed on Galactic pulsars. In this work, we use the ellipticity inferred from the putative millisecond magnetars in short gamma-ray bursts (SGRBs) to estimate their detectability by current and future GW detectors. For ∼1\sim 1 ms magnetars inferred from the SGRB data, the detection horizon is ∼30\sim 30 Mpc and ∼600\sim 600 Mpc for advanced LIGO (aLIGO) and Einstein Telescope (ET), respectively. Using the ellipticity of SGRB millisecond magnetars as calibration, we estimate the ellipticity and gravitational wave strain of Galactic pulsars and magnetars assuming that the ellipticity is magnetic-distortion-induced. We find that the results are consistent with the null detection results of Galactic pulsars and magnetars with the aLIGO O1. We further predict that the GW signals from these pulsars/magnetars may not be detectable by the currently designed aLIGO detector. The ET detector may be able to detect some relatively low frequency signals (<50<50 Hz) from some of these pulsars. Limited by its design sensitivity, the eLISA detector seems not suitable for detecting the signals from Galactic pulsars and magnetars.Comment: Accepted for publication in Ap

    Hawking radiation from spherically symmetrical gravitational collapse to an extremal R-N black hole for a charged scalar field

    Full text link
    Sijie Gao has recently investigated Hawking radiation from spherically symmetrical gravitational collapse to an extremal R-N black hole for a real scalar field. Especially he estimated the upper bound for the expected number of particles in any wave packet belonging to Hout\mathcal{H}_{out} spontaneously produced from the state ∣0>in|0>_{in}, which confirms the traditional belief that extremal black holes do not radiate particles. Making some modifications, we demonstrate that the analysis can go through for a charged scalar field.Comment: 10 pages, 1 figur

    On Neutralization of Charged Black Holes

    Full text link
    For non-spinning, charged (Reissner–Nordström) black holes, the particles with an opposite sign of charge with respect to that of the black hole will be pulled into the black hole by the extra electromagnetic force. Such a hole will be quickly neutralized so that there should not exist significantly charged, non-spinning black holes in the universe. The case of spinning, charged (Kerr–Newmann, KN) black holes is more complicated. For a given initial position and initial velocity of the particle, an oppositely charged particle does not always more easily fall into the black hole than a neutral particle. The possible existence of a magnetosphere further complicate the picture. One therefore cannot straightforwardly conclude that a charged spinning black hole will be neutralized. In this paper, we make the first step to investigate the neutralization of KN black holes without introducing a magnetosphere. We track the particle trajectories under the influence of the curved space–time and the electromagnetic field carried by the spinning, charged black hole. A statistical method is used to investigate the neutralization problem. We find a universal dependence of the falling probability into the black hole on the charge of the test particle, with the oppositely charged particles having a higher probability of falling. We therefore conclude that charged, spinning black holes without a magnetosphere should be quickly neutralized, consistent with people’s intuition. The neutralization problem of KN black holes with a corotating force-free magnetosphere is subject to further studies

    Negative phase velocity in nonlinear oscillatory systems --mechanism and parameter distributions

    Full text link
    Waves propagating inwardly to the wave source are called antiwaves which have negative phase velocity. In this paper the phenomenon of negative phase velocity in oscillatory systems is studied on the basis of periodically paced complex Ginzbug-Laundau equation (CGLE). We figure out a clear physical picture on the negative phase velocity of these pacing induced waves. This picture tells us that the competition between the frequency ωout\omega_{out} of the pacing induced waves with the natural frequency ω0\omega_{0} of the oscillatory medium is the key point responsible for the emergence of negative phase velocity and the corresponding antiwaves. ωoutω0>0\omega_{out}\omega_{0}>0 and ∣ωout∣<∣ω0∣|\omega_{out}|<|\omega_{0}| are the criterions for the waves with negative phase velocity. This criterion is general for one and high dimensional CGLE and for general oscillatory models. Our understanding of antiwaves predicts that no antispirals and waves with negative phase velocity can be observed in excitable media

    Novel interface-selected waves and their influences on wave competitions

    Full text link
    The topic of interface effects in wave propagation has attracted great attention due to their theoretical significance and practical importance. In this paper we study nonlinear oscillatory systems consisting of two media separated by an interface, and find a novel phenomenon: interface can select a type of waves (ISWs). Under certain well defined parameter condition, these waves propagate in two different media with same frequency and same wave number; the interface of two media is transparent to these waves. The frequency and wave number of these interface-selected waves (ISWs) are predicted explicitly. Varying parameters from this parameter set, the wave numbers of two domains become different, and the difference increases from zero continuously as the distance between the given parameters and this parameter set increases from zero. It is found that ISWs can play crucial roles in practical problems of wave competitions, e.g., ISWs can suppress spirals and antispirals

    Negative refraction in nonlinear wave systems

    Full text link
    People have been familiar with the phenomenon of wave refraction for several centuries. Recently, a novel type of refraction, i.e., negative refraction, where both incident and refractory lines locate on the same side of the normal line, has been predicted and realized in the context of linear optics in the presence of both right- and left-handed materials. In this work, we reveal, by theoretical prediction and numerical verification, negative refraction in nonlinear oscillatory systems. We demonstrate that unlike what happens in linear optics, negative refraction of nonlinear waves does not depend on the presence of the special left-handed material, but depends on suitable physical condition. Namely, this phenomenon can be observed in wide range of oscillatory media under the Hopf bifurcation condition. The complex Ginzburg-Landau equation and a chemical reaction-diffusion model are used to demonstrate the feasibility of this nonlinear negative refraction behavior in practice

    Measuring mass transfer of AM CVn binaries with a space-based gravitational wave detector

    Full text link
    The formation mechanism of AM CVn binary has not been well understood yet. Accurate measurements of the mass transfer rate can help to determine the formation mechanism. But unfortunately such observation by electromagnetic means is quite challenging. One possible formation channel of AM CVn binary is a semi-detached white dwarf binary. Such system emits strong gravitational wave radiation which could be measured by the future space-based detectors. We can simultaneously extract the mass transfer rate and the orbital period from the gravitational wave signal. We employ a post-Keperian waveform model of gravitational wave and carry out a Fisher analysis to estimate the measurement accuracy of mass transfer rate through gravitational wave detection. Special attention is paid to the observed sources in Gaia Data Release 2. We found that we can accurately measure the mass transfer rate for those systems. Comparing to electromagnetic observations, gravitational wave detection improves the accuracy more than one order. Our results imply that the gravitational wave detection will help much in understanding the formation mechanism of AM CVn binaries
    • …
    corecore