7,591 research outputs found

    Quantifying jet transport properties via large pTp_T hadron production

    Full text link
    Nuclear modification factor RAAR_{AA} for large pTp_T single hadron is studied in a next-to-leading order (NLO) perturbative QCD (pQCD) parton model with medium-modified fragmentation functions (mFFs) due to jet quenching in high-energy heavy-ion collisions. The energy loss of the hard partons in the QGP is incorporated in the mFFs which utilize two most important parameters to characterize the transport properties of the hard parton jets: the jet transport parameter q^0\hat q_{0} and the mean free path Ξ»0\lambda_{0}, both at the initial time Ο„0\tau_0. A phenomenological study of the experimental data for RAA(pT)R_{AA}(p_{T}) is performed to constrain the two parameters with simultaneous Ο‡2/d.o.f\chi^2/{\rm d.o.f} fits to RHIC as well as LHC data. We obtain for energetic quarks q^0β‰ˆ1.1Β±0.2\hat q_{0}\approx 1.1 \pm 0.2 GeV2^2/fm and Ξ»0β‰ˆ0.4Β±0.03\lambda_{0}\approx 0.4 \pm 0.03 fm in central Au+AuAu+Au collisions at sNN=200\sqrt{s_{NN}}=200 GeV, while q^0β‰ˆ1.7Β±0.3\hat q_{0}\approx 1.7 \pm 0.3 GeV2^2/fm, and Ξ»0β‰ˆ0.5Β±0.05\lambda_{0}\approx 0.5 \pm 0.05 fm in central Pb+PbPb+Pb collisions at sNN=2.76\sqrt{s_{NN}}=2.76 TeV. Numerical analysis shows that the best fit favors a multiple scattering picture for the energetic jets propagating through the bulk medium, with a moderate averaged number of gluon emissions. Based on the best constraints for Ξ»0\lambda_{0} and Ο„0\tau_0, the estimated value for the mean-squared transverse momentum broadening is moderate which implies that the hard jets go through the medium with small reflection.Comment: 8 pages, 6 figures, revised versio

    From Type-II Triply Degenerate Nodal Points and Three-Band Nodal Rings to Type-II Dirac Points in Centrosymmetric Zirconium Oxide

    Full text link
    Using first-principles calculations, we report that ZrO is a topological material with the coexistence of three pairs of type-II triply degenerate nodal points (TNPs) and three nodal rings (NRs), when spin-orbit coupling (SOC) is ignored. Noticeably, the TNPs reside around Fermi energy with large linear energy range along tilt direction (> 1 eV) and the NRs are formed by three strongly entangled bands. Under symmetry-preserving strain, each NR would evolve into four droplet-shaped NRs before fading away, producing distinct evolution compared with that in usual two-band NR. When SOC is included, TNPs would transform into type-II Dirac points while all the NRs have gaped. Remarkably, the type-II Dirac points inherit the advantages of TNPs: residing around Fermi energy and exhibiting large linear energy range. Both features facilitate the observation of interesting phenomena induced by type-II dispersion. The symmetry protections and low-energy Hamiltonian for the nontrivial band crossings are discussed.Comment: 7 pages, 5 figures, J. Phys. Chem. Lett. 201
    • …
    corecore