47 research outputs found

    Motion Offset for Blur Modeling

    Get PDF
    Motion blur caused by the relative movement between the camera and the subject is often an undesirable degradation of the image quality. In most conventional deblurring methods, a blur kernel is estimated for image deconvolution. Due to the ill-posed nature, predefined priors are proposed to suppress the ill-posedness. However, these predefined priors can only handle some specific situations. In order to achieve a better deblurring performance on dynamic scene, deep-learning based methods are proposed to learn a mapping function that restore the sharp image from a blurry image. The blur may be implicitly modelled in feature extraction module. However, the blur modelled from the paired dataset cannot be well generalized to some real-world scenes. To summary, an accurate and dynamic blur model that more closely approximates real-world blur is needed. By revisiting the principle of camera exposure, we can model the blur with the displacements between sharp pixels and the exposed pixel, namely motion offsets. Given specific physical constraints, motion offsets are able to form different exposure trajectories (i.e. linear, quadratic). Compare to conventional blur kernel, our proposed motion offsets are a more rigorous approximation for real-world blur, since they can constitute a non-linear and non-uniform motion field. Through learning from dynamic scene dataset, an accurate and spatial-variant motion offset field is obtained. With accurate motion information and a compact blur modeling method, we explore the ways of utilizing motion information to facilitate multiple blur-related tasks. By introducing recovered motion offsets, we build up a motion-aware and spatial-variant convolution. For extracting a video clip from a blurry image, motion offsets can provide an explicit (non-)linear motion trajectory for interpolating. We also work towards a better image deblurring performance in real-world scenarios by improving the generalization ability of the deblurring model

    BDS+: An Inter-Datacenter Data Replication System With Dynamic Bandwidth Separation

    Get PDF
    Many important cloud services require replicating massive data from one datacenter (DC) to multiple DCs. While the performance of pair-wise inter-DC data transfers has been much improved, prior solutions are insufficient to optimize bulk-data multicast, as they fail to explore the rich inter-DC overlay paths that exist in geo-distributed DCs, as well as the remaining bandwidth reserved for online traffic under fixed bandwidth separation scheme. To take advantage of these opportunities, we present BDS+, a near-optimal network system for large-scale inter-DC data replication. BDS+ is an application-level multicast overlay network with a fully centralized architecture, allowing a central controller to maintain an up-to-date global view of data delivery status of intermediate servers, in order to fully utilize the available overlay paths. Furthermore, in each overlay path, it leverages dynamic bandwidth separation to make use of the remaining available bandwidth reserved for online traffic. By constantly estimating online traffic demand and rescheduling bulk-data transfers accordingly, BDS+ can further speed up the massive data multicast. Through a pilot deployment in one of the largest online service providers and large-scale real-trace simulations, we show that BDS+ can achieve 3-5 x speedup over the provider's existing system and several well-known overlay routing baselines of static bandwidth separation. Moreover, dynamic bandwidth separation can further reduce the completion time of bulk data transfers by 1.2 to 1.3 times

    Plant-Derived Exosomes as a Drug-Delivery Approach for the Treatment of Inflammatory Bowel Disease and Colitis-Associated Cancer

    No full text
    Inflammatory bowel disease (IBD) is a chronic recurrent intestinal disease and includes Crohn’s disease (CD) and ulcerative colitis (UC). Due to the complex etiology of colitis, the current treatments of IBD are quite limited and are mainly concentrated on the remission of the disease. In addition, the side effects of conventional drugs on the body cannot be ignored. IBD also has a certain relationship with colitis-associated cancer (CAC), and inflammatory cells can produce a large number of tumor-promoting cytokines to promote tumor progression. In recent years, exosomes from plants have been found to have the ability to load drugs to target the intestine and have great potential for the treatment of intestinal diseases. This plant-derived exosome-targeting delivery system can load chemical or nucleic acid drugs and deliver them to intestinal inflammatory sites stably and efficiently. This review summarizes the pathophysiological characteristics of IBD and CAC as well as the application and prospect of plant exosomes in the treatment of IBD and CAC

    Numerical simulation study of rock breaking mechanism by high voltage electric pulse

    No full text
    High-voltage electric pulse(HVEP)drilling has become a new and efficient rock breaking method, which is also the research focus in the field of drilling speed increase. To probe into rock breaking mechanism of high voltage electric pulse, this study establishes a two-dimensional numerical model of multi-physical field coupling electric breakdown of single pair of electrodes. The model reproduces the generation of plasma channels in homogeneous red sandstone from the coupling of current field, electric breakdown field and circuit field. This paper analyzes the effect of electrode pair angle, voltage and electrode spacing on rock electrical breakdown(that is, the formation of plasma channel in rock). The model includes the circuit structure parameters of pulse tool, the occurrence and development of electrical breakdown, and the relationship between electrical breakdown intensity and time. Results indicate that the plasma channel begins to sprout from the partial area near the top of the discharge electrode and develops towards the partial weak dielectric strength. With the voltage value of loading pulse increasing gradually, the time of electrical breakdown decreases gradually; comparatively, the equivalent failure volume of rock model increases gradually, and there is a positive correlation between them. On the precondition that the rock can be electrically broken, increasing the electrode spacing can improve the rock breaking efficiency of high voltage electric pulse. The equivalent failure volume of rock shows significant fluctuations during the gradual increase of electrode inclination angle of discharge electrode, and its extreme value mostly appears in the range of electrode inclination angle of 35°~ 55°. To further promote the industrial application of high-voltage electric pulse rock breaking, this paper proposes a three-dimensional numerical model of multi-physical field coupling dynamic electric breakdown of red sandstone based on two-dimensional model, reproducing the appearance of the fracture crater in the rock during the rock breaking process with electrode bit. At the same time, the self-designed coaxial electrode bit is selected for experiments of electric breakdown, and the laboratory experimental results of electric breakdown confirm the simulation experimental results
    corecore