85 research outputs found

    Understanding User Behavior in Volumetric Video Watching: Dataset, Analysis and Prediction

    Full text link
    Volumetric video emerges as a new attractive video paradigm in recent years since it provides an immersive and interactive 3D viewing experience with six degree-of-freedom (DoF). Unlike traditional 2D or panoramic videos, volumetric videos require dense point clouds, voxels, meshes, or huge neural models to depict volumetric scenes, which results in a prohibitively high bandwidth burden for video delivery. Users' behavior analysis, especially the viewport and gaze analysis, then plays a significant role in prioritizing the content streaming within users' viewport and degrading the remaining content to maximize user QoE with limited bandwidth. Although understanding user behavior is crucial, to the best of our best knowledge, there are no available 3D volumetric video viewing datasets containing fine-grained user interactivity features, not to mention further analysis and behavior prediction. In this paper, we for the first time release a volumetric video viewing behavior dataset, with a large scale, multiple dimensions, and diverse conditions. We conduct an in-depth analysis to understand user behaviors when viewing volumetric videos. Interesting findings on user viewport, gaze, and motion preference related to different videos and users are revealed. We finally design a transformer-based viewport prediction model that fuses the features of both gaze and motion, which is able to achieve high accuracy at various conditions. Our prediction model is expected to further benefit volumetric video streaming optimization. Our dataset, along with the corresponding visualization tools is accessible at https://cuhksz-inml.github.io/user-behavior-in-vv-watching/Comment: Accepted by ACM MM'2

    From GPT-4 to Gemini and Beyond: Assessing the Landscape of MLLMs on Generalizability, Trustworthiness and Causality through Four Modalities

    Full text link
    Multi-modal Large Language Models (MLLMs) have shown impressive abilities in generating reasonable responses with respect to multi-modal contents. However, there is still a wide gap between the performance of recent MLLM-based applications and the expectation of the broad public, even though the most powerful OpenAI's GPT-4 and Google's Gemini have been deployed. This paper strives to enhance understanding of the gap through the lens of a qualitative study on the generalizability, trustworthiness, and causal reasoning capabilities of recent proprietary and open-source MLLMs across four modalities: ie, text, code, image, and video, ultimately aiming to improve the transparency of MLLMs. We believe these properties are several representative factors that define the reliability of MLLMs, in supporting various downstream applications. To be specific, we evaluate the closed-source GPT-4 and Gemini and 6 open-source LLMs and MLLMs. Overall we evaluate 230 manually designed cases, where the qualitative results are then summarized into 12 scores (ie, 4 modalities times 3 properties). In total, we uncover 14 empirical findings that are useful to understand the capabilities and limitations of both proprietary and open-source MLLMs, towards more reliable downstream multi-modal applications

    The Effect of Myosin Light Chain Kinase on the Occurrence and Development of Intracranial Aneurysm

    Get PDF
    Myosin light chain kinase is a key enzyme in smooth muscle cell contraction. However, whether myosin light chain kinase plays a role in the occurrence or development of intracranial aneurysms is not clear. The present study explored the function of myosin light chain kinase in human intracranial aneurysm tissues. Five aneurysm samples and five control samples were collected, and smooth muscle cells (SMCs) were dissociated and cultured. A label-free proteomic analysis was performed to screen the differentially expressed proteins between aneurysm and control samples. The expression and function of myosin light chain kinase in aneurysms were examined. We found that 180 proteins were differentially expressed between the aneurysm and control samples, among which 88 were increased and 92 (including myosin light chain kinase) were decreased in aneurysms compared to control tissues. In a model of the inflammatory environment, contractility was weakened and apoptosis was increased in aneurysm SMCs compared to human brain SMCs (p < 0.05). The knock down of myosin light chain kinase in human brain SMCs caused effects similar to those observed in aneurysm SMCs. These results indicated that myosin light chain kinase plays an important role in maintaining smooth muscle contractility, cell survival and inflammation tolerance

    Mesenchymal stem cells: potential application for the treatment of hepatic cirrhosis

    No full text
    Abstract Nowadays, orthotopic liver transplantation is considered the most efficient approach to the end stage of chronic hepatic cirrhosis. Because of the limitations of orthotopic liver transplantation, stem cells are an attractive therapeutic option. Mesenchymal stem cells (MSCs) especially show promise as an alternative treatment for hepatic cirrhosis in animal models and during clinical trials. Nevertheless, the homing of transplanted MSCs to the liver occurs in limited numbers. Therefore, we review the strategies for enhancing the homing of MSCs, mainly via the delivery routes, optimizing cell culture conditions, stimulating the target sites, and genetic modification

    A secure visual framework for multi-index protection evaluation in networks

    No full text
    Mining the core value of Industrial Internet of Things (IIoT) data safely and reducing the risk of malicious attacks are the inherent requirements of industrial data visualization. Visualization technology has become the main tool for data aggregation, mining and analysis of IIoT data through graphical representation. However, visualization technology still has two shortcomings in big data calculation and analysis scenarios. On the one hand, visual results will lead to the disclosure of sensitive privacy. On the other hand, most visualization tools can't provide an interactive framework for users to select the suitable solutions. To address these problems, we present an open accessible Visual framework based on Differential Privacy theory (VisDP), which provides Multi-index Quantitative comprehensive Evaluation technology (MQE) for data mining results. Considering the advantages of interactive mechanism, VisDP provides rich optional schemes, including the operating web, calling API and the downloading SDK. Finally, we verify the availability and privacy of MQE through mathematical proofs, analyze the hospital medical waste detection system that actually applies the framework, and the experimental results have showed the effectiveness and practicality of the proposed platform

    On optimization of Spin-Forming Process Parameters for Magnesium Alloy Wheel Hub Based on Gray Relational Analysis

    No full text
    To study the influencing factors of process parameters on the wall thickness deviation and internal warpage deviation of the workpiece in magnesium alloy wheel hub spin molding, a two-pass heterogeneous spin molding model is proposed. To ensure the accuracy of the simulation results, the stress–strain data of AZ31 magnesium alloy at different temperatures and different strain rates were obtained through tests. Wall thickness deviation and internal warp deviation after molding were used as evaluation indexes of workpiece molding quality. ABAQUS software facilitated the numerical simulation and analysis of the magnesium alloy wheel hub spinning process. Gray relational degree analysis optimized the first-pass process parameters, elucidating the impact of the axial offset, the thinning ratio, and the feed ratio on forming quality. The application of optimized parameters in the hub spinning simulation resulted in a substantial 28.84% reduction in wall thickness deviation and a 4.88% reduction in inner diameter deviation. This study underscores the efficacy of employing Gray Relational Analysis for comprehensive parameter optimization, ensuring wheel hub quality. Moreover, it provides a theoretical foundation for enterprises to expedite research and development cycles and minimize associated costs

    Investigation of Yield Surfaces Evolution for Polycrystalline Aluminum after Pre-Cyclic Loading by Experiment and Crystal Plasticity Simulation

    No full text
    This study aims at introducing the back stress of anisotropic strain-hardening into the crystal plasticity theory and demonstrating the rationality of this crystal plasticity model to describe the evolution of the subsequent yield surface of polycrystalline aluminum at the mesoscopic scale under complex pre-cyclic loading paths. By using two different scale finite element models, namely a global finite element model (GFEM) as the same size of the thin-walled tube specimen used in the experiments and a 3D cubic polycrystalline aggregate representative volume element (RVE) model, the evolution of the subsequent yield surface for different unloading cases after 30 pre-cycles is further performed by experiments and numerical simulations within a crystal plasticity finite element (CPFE) frame. Results show that the size and shape of the subsequent yield surfaces are extremely sensitive to the chosen offset strain and the pre-cyclic loading direction, which present pronounced anisotropic hardening through a translation and a distortion of the yield surface characterized by the obvious “sharp corner” in the pre-deformation direction and “flat” in the reverse direction by the definition of small offset strain, while the subsequent yield surface exhibits isotropic hardening reflected by the von Mises circle to be distorted into an ellipse by the definition of large offset strain. In addition, the heterogeneous properties of equivalent plastic strain increment are further discussed under different offset strain conditions. Modeling results from this study show that the heterogeneity of plastic deformation decreases as a law of fraction exponential function with the increasing offset strain. The above analysis indicates that anisotropic hardening of the yield surface is correlated with heterogeneous deformation caused by crystal microstructure and crystal slip. The crystal plasticity model based on the above microscopic mechanism can accurately capture the directional hardening features of the yield surface

    Mitochondrial Homeostasis in VSMCs as a Central Hub in Vascular Remodeling

    No full text
    Vascular remodeling is a common pathological hallmark of many cardiovascular diseases. Vascular smooth muscle cells (VSMCs) are the predominant cell type lining the tunica media and play a crucial role in maintaining aortic morphology, integrity, contraction and elasticity. Their abnormal proliferation, migration, apoptosis and other activities are tightly associated with a spectrum of structural and functional alterations in blood vessels. Emerging evidence suggests that mitochondria, the energy center of VSMCs, participate in vascular remodeling through multiple mechanisms. For example, peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α)-mediated mitochondrial biogenesis prevents VSMCs from proliferation and senescence. The imbalance between mitochondrial fusion and fission controls the abnormal proliferation, migration and phenotypic transformation of VSMCs. Guanosine triphosphate-hydrolyzing enzymes, including mitofusin 1 (MFN1), mitofusin 2 (MFN2), optic atrophy protein 1 (OPA1) and dynamin-related protein 1 (DRP1), are crucial for mitochondrial fusion and fission. In addition, abnormal mitophagy accelerates the senescence and apoptosis of VSMCs. PINK/Parkin and NIX/BINP3 pathways alleviate vascular remodeling by awakening mitophagy in VSMCs. Mitochondrial DNA (mtDNA) damage destroys the respiratory chain of VSMCs, resulting in excessive ROS production and decreased ATP levels, which are related to the proliferation, migration and apoptosis of VSMCs. Thus, maintaining mitochondrial homeostasis in VSMCs is a possible way to relieve pathologic vascular remodeling. This review aims to provide an overview of the role of mitochondria homeostasis in VSMCs during vascular remodeling and potential mitochondria-targeted therapies
    corecore