4,513 research outputs found

    Universal Time Scale for Thermalization in Two-dimensional Systems

    Full text link
    The Fermi-Pasta-Ulam-Tsingou problem, i.e., the problem of energy equipartition among normal modes in a weakly nonlinear lattice, is here studied in two types of two-dimensional (2D) lattices, more precisely in lattices with square cell and triangular cell. We apply the wave-turbulence approach to describe the dynamics and find multi-wave resonances play a major role in the transfer of energy among the normal modes. We show that, in general, the thermalization time in 2D systems is inversely proportional to the squared perturbation strength in the thermodynamic limit. Numerical simulations confirm that the results are consistent with the theoretical prediction no matter systems are translation-invariant or not. It leads to the conclusion that such systems can always be thermalized by arbitrarily weak many-body interactions. Moreover, the validity for disordered lattices implies that the localized states are unstable.Comment: 6 pages, 4 figure

    A novel method for apoptosis protein subcellular localization prediction combining encoding based on grouped weight and support vector machine

    Get PDF
    AbstractApoptosis proteins have a central role in the development and homeostasis of an organism. These proteins are very important for understanding the mechanism of programmed cell death. Based on the idea of coarse-grained description and grouping in physics, a new feature extraction method with grouped weight for protein sequence is presented, and applied to apoptosis protein subcellular localization prediction associated with support vector machine. For the same training dataset and the same predictive algorithm, the overall prediction accuracy of our method in Jackknife test is 13.2% and 15.3% higher than the accuracy based on the amino acid composition and instability index. Especially for the else class apoptosis proteins, the increment of prediction accuracy is 41.7 and 33.3 percentile, respectively. The experiment results show that the new feature extraction method is efficient to extract the structure information implicated in protein sequence and the method has reached a satisfied performance despite its simplicity. The overall prediction accuracy of EBGW_SVM model on dataset ZD98 reach 92.9% in Jackknife test, which is 8.2–20.4 percentile higher than other existing models. For a new dataset ZW225, the overall prediction accuracy of EBGW_SVM achieves 83.1%. Those implied that EBGW_SVM model is a simple but efficient prediction model for apoptosis protein subcellular location prediction

    Simulation algorithm for spiral case structure in hydropower station

    Get PDF
    AbstractIn this study, the damage-plasticity model for concrete that was verified by the model experiment was used to calculate the damage to a spiral case structure based on the damage mechanics theory. The concrete structure surrounding the spiral case was simulated with a three-dimensional finite element model. Then, the distribution and evolution of the structural damage were studied. Based on investigation of the change of gap openings between the steel liner and concrete structure, the impact of the non-uniform variation of gaps on the load-bearing ratio between the steel liner and concrete structure was analyzed. The comparison of calculated results of the simplified and simulation algorithms shows that the simulation algorithm is a feasible option for the calculation of spiral case structures. In addition, the shell-spring model was introduced for optimization analysis, and the results were reasonable

    Effects of time-varying β\beta in SNLS3 on constraining interacting dark energy models

    Get PDF
    It has been found that, for the Supernova Legacy Survey three-year (SNLS3) data, there is strong evidence for the redshift-evolution of color-luminosity parameter β\beta. In this paper, adopting the ww-cold-dark-matter (wwCDM) model and considering its interacting extensions (with three kinds of interaction between dark sectors), we explore the evolution of β\beta and its effects on parameter estimation. In addition to the SNLS3 data, we also take into account the Planck distance priors data of the cosmic microwave background (CMB), the galaxy clustering (GC) data extracted from SDSS DR7 and BOSS, as well as the direct measurement of Hubble constant from the Hubble Space Telescope (HST) observation. We find that, for all the interacting dark energy (IDE) models, adding a parameter of β\beta can reduce χ2\chi^2 by ∼\sim 34, indicating that β1=0\beta_1 = 0 is ruled out at 5.8σ\sigma confidence level (CL). Furthermore, it is found that varying β\beta can significantly change the fitting results of various cosmological parameters: for all the dark energy models considered in this paper, varying β\beta yields a larger Ωc0\Omega_{c0} and a larger ww; on the other side, varying β\beta yields a smaller hh for the wwCDM model, but has no impact on hh for the three IDE models. This implies that there is a degeneracy between hh and γ\gamma. Our work shows that the evolution of β\beta is insensitive to the interaction between dark sectors, and then highlights the importance of considering β\beta's evolution in the cosmology fits.Comment: 11 pages, 6 figures, 1 table; revised version accepted by EPJC. arXiv admin note: substantial text overlap with arXiv:1310.6109, arXiv:1312.018
    • …
    corecore