5,169 research outputs found

    Anomalous gauge couplings of the Higgs boson at the CERN LHC: Semileptonic mode in WW scatterings

    Full text link
    We make a full tree level study of the signatures of anomalous gauge couplings of the Higgs boson at the CERN LHC via the semileptonic decay mode in WW scatterings. Both signals and backgrounds are studied at the hadron level for the Higgs mass in the range 115 GeV to 200 GeV. We carefully impose suitable kinematical cuts for suppressing the backgrounds. To the same sensitivity as in the pure leptonic mode, our result shows that the semileptonic mode can reduce the required integrated luminosity by a factor of 3. If the anomalous couplings in nature are actually larger than the sensitivity bounds shown in the text, the experiment can start the test for an integrated luminosity of 50 inverse fb.Comment: PACS numbers updated. Version published in Phys.Rev.D79,055010(2009

    Electronic, mechanical, and thermodynamic properties of americium dioxide

    Full text link
    By performing density functional theory (DFT) +UU calculations, we systematically study the electronic, mechanical, tensile, and thermodynamic properties of AmO2_{2}. The experimentally observed antiferromagnetic insulating feature [J. Chem. Phys. 63, 3174 (1975)] is successfully reproduced. It is found that the chemical bonding character in AmO2_{2} is similar to that in PuO2_{2}, with smaller charge transfer and stronger covalent interactions between americium and oxygen atoms. The valence band maximum and conduction band minimum are contributed by 2pβˆ’5fp-5f hybridized and 5ff electronic states respectively. The elastic constants and various moduli are calculated, which show that AmO2_{2} is less stable against shear forces than PuO2_{2}. The stress-strain relationship of AmO2_{2} is examined along the three low-index directions by employing the first-principles computational tensile test method. It is found that similar to PuO2_{2}, the [100] and [111] directions are the strongest and weakest tensile directions, respectively, but the theoretical tensile strengths of AmO2_{2} are smaller than those of PuO2_{2}. The phonon dispersion curves of AmO2_{2} are calculated and the heat capacities as well as lattice expansion curve are subsequently determined. The lattice thermal conductance of AmO2_{2} is further evaluated and compared with attainable experiments. Our present work integrally reveals various physical properties of AmO2_{2} and can be referenced for technological applications of AmO2_{2} based materials.Comment: 23 pages, 8 figure
    • …
    corecore