6,595 research outputs found

    Criterion on remote clocks synchronization within a Heisenberg scaling accuracy

    Full text link
    We propose a quantum method to judge whether two spatially separated clocks have been synchronized within a specific accuracy σ\sigma. If the measurement result of the experiment is obviously a nonzero value, the time difference between two clocks is smaller than σ\sigma; otherwise the difference is beyond σ\sigma. On sharing the 2NN-qubit bipartite maximally entangled state in this scheme, the accuracy of judgement can be enhanced to σπ/(ω(N+1))\sigma\sim{\pi}/{(\omega(N+1))}. This criterion is consistent with Heisenberg scaling that can be considered as beating standard quantum limit, moreover, the unbiased estimation condition is not necessary.Comment: 5 pages, 1 figur

    Transmit Optimization with Improper Gaussian Signaling for Interference Channels

    Full text link
    This paper studies the achievable rates of Gaussian interference channels with additive white Gaussian noise (AWGN), when improper or circularly asymmetric complex Gaussian signaling is applied. For the Gaussian multiple-input multiple-output interference channel (MIMO-IC) with the interference treated as Gaussian noise, we show that the user's achievable rate can be expressed as a summation of the rate achievable by the conventional proper or circularly symmetric complex Gaussian signaling in terms of the users' transmit covariance matrices, and an additional term, which is a function of both the users' transmit covariance and pseudo-covariance matrices. The additional degrees of freedom in the pseudo-covariance matrix, which is conventionally set to be zero for the case of proper Gaussian signaling, provide an opportunity to further improve the achievable rates of Gaussian MIMO-ICs by employing improper Gaussian signaling. To this end, this paper proposes widely linear precoding, which efficiently maps proper information-bearing signals to improper transmitted signals at each transmitter for any given pair of transmit covariance and pseudo-covariance matrices. In particular, for the case of two-user Gaussian single-input single-output interference channel (SISO-IC), we propose a joint covariance and pseudo-covariance optimization algorithm with improper Gaussian signaling to achieve the Pareto-optimal rates. By utilizing the separable structure of the achievable rate expression, an alternative algorithm with separate covariance and pseudo-covariance optimization is also proposed, which guarantees the rate improvement over conventional proper Gaussian signaling.Comment: Accepted by IEEE Transactions on Signal Processin

    Fitting magnetic field gradient with Heisenberg-scaling accuracy

    Full text link
    We propose a quantum fitting scheme to estimate the magnetic field gradient with NN-atom spins preparing in W state, which attains the Heisenberg-scaling accuracy. Our scheme combines the quantum multi-parameter estimation and the least square linear fitting method to achieve the quantum Cram\'{e}r-Rao bound (QCRB). We show that the estimated quantity achieves the Heisenberg-scaling accuracy. In single parameter estimation with assumption that the magnetic field is strictly linear, two optimal measurements can achieve the identical Heisenberg-scaling accuracy. Proper interpretation of the super-Heisenberg-scaling accuracy is presented. The scheme of quantum metrology combined with data fitting provides a new method in fast high precision measurements.Comment: 7 pages, 2 figure

    The global geometrical property of jet events in high-energy nuclear collisions

    Full text link
    We present the first theoretical study of medium modifications of the global geometrical pattern, i.e., transverse sphericity (SS_{\perp}) distribution of jet events with parton energy loss in relativistic heavy-ion collisions. In our investigation, POWHEG+PYTHIA is employed to make an accurate description of transverse sphericity in the p+p baseline, which combines the next-to-leading order (NLO) pQCD calculations with the matched parton shower (PS). The Linear Boltzmann Transport (LBT) model of the parton energy loss is implemented to simulate the in-medium evolution of jets. We calculate the event normalized transverse sphericity distribution in central Pb+Pb collisions at the LHC, and give its medium modifications. An enhancement of transverse sphericity distribution at small SS_{\perp} region but a suppression at large SS_{\perp} region are observed in A+A collisions as compared to their p+p references, which indicates that in overall the geometry of jet events in Pb+Pb becomes more pencil-like. We demonstrate that for events with 2 jets in the final-state of heavy-ion collisions, the jet quenching makes the geometry more sphere-like with medium-induced gluon radiation. However, for events with 3\ge 3~jets, parton energy loss in the QCD medium leads to the events more pencil-like due to jet number reduction, where less energetic jets may lose their energies and then fall off the jet selection kinematic cut. These two effects offset each other and in the end result in more jetty events in heavy-ion collisions relative to that in p+p.Comment: 9 pages, 9 figure

    Extrusion Processing of Ultra-High Molecular Weight Polyethylene

    Get PDF
    Ultra-high molecular weight polyethylene (UHMWPE) is a unique thermoplastic polymer with excellent performances. It has ultra-high molecular weight and extreme rheological behaviour, which make it a worldwide challenge to process UHMWPE continuously with little or without processing aids. Although the polymer processing technology has been increasingly maturated, it still cannot carry out the industrialized production efficiency by conventional processing methods and apparatus at present. In this chapter, we review the progress of extrusion processing technology for UHMWPE, including ram extrusion, single screw extrusion, twin screw extrusion and novel extrusion technology based on extensional rheology. By summarizing of these processing technologies, a basic framework of the processing principles and methods for UHMWPE is clearly presented. It is helpful for us to understand the processing characteristics and methods for such thermoplastic polymer with ultra-high molecular weight
    corecore