292 research outputs found

    Building Extraction from LiDAR Point Clouds Based on Revised RandLA-Net

    Get PDF
    3D building models is crucial for applications in smart cities. Automatic reconstruction of 3D buildings has been investigated based on various data sources. Point clouds from airborne LiDAR scanners can be used to extract buildings data due to its high accuracy and point density. In this paper, we present a methodology to segment buildings and corresponding rooftop structure from point clouds. First, RandLA-Net, which is an efficient and lightweight neural network for semantic segmentation of large-scale point clouds, is revised and adopted for building segmentation. By implementing local feature aggregation of each point, RandLA-Net can effectively preserve geometric details in point clouds. Besides 3D coordinates of point clouds, we incorporated point attributes including pulse intensity and return numbers into the network as additional features. Feature normalizations are applied to the input features. To achieve a better result of the local feature aggregation, hyperparameters of the network are fine-tuned according to the density of points and building size. Based on the classified building point clouds, DBSCAN clustering algorithm is implemented for segmenting individual buildings. Elevation histogram analysis is conducted to determine optimal threshold values for delineating candidate rooftop point clouds of individual buildings. For the buildings with multiple rooftops, multiple elevation threshold values are necessary to extract corresponding rooftops or walls. Then DBSCAN is employed again for segmentation of individual rooftops and denoising of point clouds of each building. Finally, Alpha-shape analysis is applied based on adaptive threshold values to build the envelope of each rooftop. Experiments show that our implementation of building segmentation using RandLA-net achieves higher mean IoU (Intersection over Union) and better classification performance in building segmentation. ISPRS benchmark data was used in our experiment and our methodology produce results with accuracy of 90.79%

    Long-lived quantum memory enabling atom-photon entanglement over 101 km telecom fiber

    Full text link
    Long-distance entanglement distribution is the key task for quantum networks, enabling applications such as secure communication and distributed quantum computing. Here we report on novel developments extending the reach for sharing entanglement between a single 87^{87}Rb atom and a single photon over long optical fibers. To maintain a high fidelity during the long flight times through such fibers, the coherence time of the single atom is prolonged to 7 ms by applying a long-lived qubit encoding. In addition, the attenuation in the fibers is minimized by converting the photon's wavelength to the telecom S-Band via polarization-preserving quantum frequency conversion. This enables to observe entanglement between the atomic quantum memory and the emitted photon after passing 101 km of optical fiber with a fidelity better than 70.8±\pm2.4%. The fidelity, however, is no longer reduced due to loss of coherence of the atom or photon but in the current setup rather due to detector dark counts, showing the suitability of our platform to realize city-to-city scale quantum network links.Comment: 11 pages, 8 figures, comments are welcom

    Cardiospecific Overexpression of ATPGD1 (Carnosine Synthase) Increases Histidine Dipeptide Levels and Prevents Myocardial Ischemia Reperfusion Injury

    Get PDF
    Background: Myocardial ischemia reperfusion (I/R) injury is associated with complex pathophysiological changes characterized by pH imbalance, the accumulation of lipid peroxidation products acrolein and 4-hydroxy trans-2-nonenal, and the depletion of ATP levels. Cardioprotective interventions, designed to address individual mediators of I/R injury, have shown limited efficacy. The recently identified enzyme ATPGD1 (Carnosine Synthase), which synthesizes histidyl dipeptides such as carnosine, has the potential to counteract multiple effectors of I/R injury by buffering intracellular pH and quenching lipid peroxidation products and may protect against I/R injury. Methods and Results: We report here that ÎČ-alanine and carnosine feeding enhanced myocardial carnosine levels and protected the heart against I/R injury. Cardiospecific overexpression of ATPGD1 increased myocardial histidyl dipeptides levels and protected the heart from I/R injury. Isolated cardiac myocytes from ATPGD1-transgenic hearts were protected against hypoxia reoxygenation injury. The overexpression of ATPGD1 prevented the accumulation of acrolein and 4-hydroxy trans-2-nonenal-protein adducts in ischemic hearts and delayed acrolein or 4-hydroxy trans-2-nonenal-induced hypercontracture in isolated cardiac myocytes. Changes in the levels of ATP, high-energy phosphates, intracellular pH, and glycolysis during low-flow ischemia in the wild-type mice hearts were attenuated in the ATPGD1-transgenic hearts. Two natural dipeptide analogs (anserine and balenine) that can either quench aldehydes or buffer intracellular pH, but not both, failed to protect against I/R injury. Conclusions: Either exogenous administration or enhanced endogenous formation of histidyl dipeptides prevents I/R injury by attenuating changes in intracellular pH and preventing the accumulation of lipid peroxidation derived aldehydes

    Exploring disease interrelationships in older inpatients: a single-centre, retrospective study

    Get PDF
    BackgroundComorbidity is a common phenomenon in the older population; it causes a heavy burden on societies and individuals. However, the relevant evidence, especially in the southwestern region of China, is insufficient.ObjectivesWe aimed to examine current comorbidity characteristics as well as correlations among diseases in individuals aged >60 years.DesignRetrospective study.MethodsWe included records of 2,995 inpatients treated at the Gerontological Department of Sichuan Geriatric Hospital from January 2018 to February 2022. The patients were divided into groups according to sex and age. Diseases were categorised based on the International Classification of Diseases and their Chinese names. We calculated the age-adjusted Charlson Comorbidity Index (ACCI), categorised diseases using the China Health and Retirement Longitudinal Study questionnaire, and visualised comorbidity using web graphs and the Apriori algorithm.ResultsThe ACCI was generally high, and it increased with age. There were significant differences in the frequency of all diseases across age groups, especially in individuals aged ≄90 years. The most common comorbid diseases were liver diseases, stomach or other digestive diseases, and hypertension. Strong correlations between the most common digestive diseases and hypertension were observed.ConclusionOur findings provide insights into the current situation regarding comorbidity and the correlations among diseases in the older population. We expect our findings to inform future research directions as well as policies regarding general clinical practice and public health, especially for medical consortiums

    Using datamining approaches to selectacupoints in acupuncture and Moxibustion for knee osteoarthritis

    Get PDF
    Background: Acupuncture and moxibustion are traditional Chinese medicine therapies commonly used to treat knee osteoarthritis (KOA). Although acupoint selection affects the effectiveness of acupuncture and moxibustion, the basic rules of acupoint selection are little understood and there is a lack of guidelines regarding prescription. In this study, we used data mining approaches to investigate the principles of acupoint selection and provide a framework for formulation prescription in acupuncture and moxibustion for clinical treatment of KOA.Materials and Methods: PubMed, Cochrane Library, Science Citation Index, Wanfang database, VIP database, and China National Knowledge Infrastructure were searched for randomized controlled clinical trials published in English or Chinese from January 1, 2009 to October 1, 2015 evaluating the effect of acupuncture and moxibustion on KOA. Databases were established. Frequency statistics and association rule were used to extract and analyze the data.Results: A total of 876 acupuncture prescriptions and 122 acupoints were included in the analysis. Acupoints were concentrated in acupoints of fourteen meridians. The most frequently used acupoints were Dubi (ST35), Neixiyan (EX-LE4), Yanglingquan (GB34), Xuehai (SP10), Liangqiu (ST34), Zusanli (ST36), Yinlingquan (SP9), and Ashi point. The most frequently used meridian was Stomach Meridian of Foot-Yangming. Acupoints were concentrated mainly in the lower limbs. 42 acupoint pairs occurred frequently, and the top acupoint pairing was Dubi (ST35) and Neixiyan (EX-LE4).Conclusion: Acupoint selection and formulation prescription should focus on locally affected areas, and follow the theory of meridians, which helps establish guidelines for acupuncture and moxibustion in KOA patients.Key words: acupuncture and moxibustion, knee osteoarthritis, acupoint, data mining technolog

    Entangling single atoms over 33 km telecom fibre

    Get PDF
    Quantum networks promise to provide the infrastructure for many disruptive applications, such as efcient long-distance quantum communication and distributed quantum computing1,2 . Central to these networks is the ability to distribute entanglement between distant nodes using photonic channels. Initially developed for quantum teleportation3,4 and loophole-free tests of Bell’s inequality5,6 , recently, entanglement distribution has also been achieved over telecom fbres and analysed retrospectively7,8 . Yet, to fully use entanglement over long-distance quantum network links it is mandatory to know it is available at the nodes before the entangled state decays. Here we demonstrate heralded entanglement between two independently trapped single rubidium atoms generated over fbre links with a length up to 33 km. For this, we generate atom–photon entanglement in two nodes located in buildings 400 m line-of-sight apart and to overcome high-attenuation losses in the fbres convert the photons to telecom wavelength using polarization-preserving quantum frequency conversion9 . The long fbres guide the photons to a Bell-state measurement setup in which a successful photonic projection measurement heralds the entanglement of the atoms10. Our results show the feasibility of entanglement distribution over telecom fbre links useful, for example, for device-independent quantum key distribution11–13 and quantum repeater protocols. The presented work represents an important step towards the realization of large-scale quantum network links

    Sterol profiling of Leishmania parasites using a new HPLC-tandem mass spectrometry-based method and antifungal azoles as chemical probes reveals a key intermediate sterol that supports a branched ergosterol biosynthetic pathway

    Get PDF
    Human leishmaniasis is an infectious disease caused by Leishmania protozoan parasites. Current chemotherapeutic options against the deadly disease have significant limitations. The ergosterol biosynthetic pathway has been identified as a drug target in Leishmania. However, remarkable differences in the efficacy of antifungal azoles that inhibit ergosterol biosynthesis have been reported for the treatment of leishmaniasis. To better understand the sterol biosynthetic pathway in Leishmania and elucidate the mechanism underlying the differential efficacy of antifungal azoles, we developed a new LC-MS/MS method to study sterol profiles in promastigotes of three Leishmania species, including two L. donovani, one L. major and one L. tarentolae strains. A combination of distinct precursor ion masses and LC retention times allowed for specific detection of sixteen intermediate sterols between lanosterol and ergosterol using the newly developed LC-MS/MS method. Although both posaconazole and fluconazole are known inhibitors of fungal lanosterol 14α-demethylase (CYP51), only posaconazole led to a substantial accumulation of lanosterol in azole-treated L. donovani promastigotes. Furthermore, a key intermediate sterol accumulated by 40- and 7-fold when these parasites were treated with posaconazole and fluconazole, respectively, which was determined as 4α,14α-dimethylzymosterol by high resolution mass spectrometry and NMR spectroscopy. The identification of 4α,14α-dimethylzymosterol supports a branched ergosterol biosynthetic pathway in Leishmania, where lanosterol C4- and C14-demethylation reactions occur in parallel rather than sequentially. Our results suggest that selective inhibition of leishmanial CYP51 is insufficient to effectively prevent parasite growth and dual inhibitors of both CYP51 and the unknown sterol C4-demethylase may be required for optimal antiparasitic effect
    • 

    corecore