10,666 research outputs found

    Semantic-Aware Image Compressed Sensing

    Full text link
    Deep learning based image compressed sensing (CS) has achieved great success. However, existing CS systems mainly adopt a fixed measurement matrix to images, ignoring the fact the optimal measurement numbers and bases are different for different images. To further improve the sensing efficiency, we propose a novel semantic-aware image CS system. In our system, the encoder first uses a fixed number of base CS measurements to sense different images. According to the base CS results, the encoder then employs a policy network to analyze the semantic information in images and determines the measurement matrix for different image areas. At the decoder side, a semantic-aware initial reconstruction network is developed to deal with the changes of measurement matrices used at the encoder. A rate-distortion training loss is further introduced to dynamically adjust the average compression ratio for the semantic-aware CS system and the policy network is trained jointly with the encoder and the decoder in an en-to-end manner by using some proxy functions. Numerical results show that the proposed semantic-aware image CS system is superior to the traditional ones with fixed measurement matrices.Comment: Modified versio

    Compression Ratio Learning and Semantic Communications for Video Imaging

    Full text link
    Camera sensors have been widely used in intelligent robotic systems. Developing camera sensors with high sensing efficiency has always been important to reduce the power, memory, and other related resources. Inspired by recent success on programmable sensors and deep optic methods, we design a novel video compressed sensing system with spatially-variant compression ratios, which achieves higher imaging quality than the existing snapshot compressed imaging methods with the same sensing costs. In this article, we also investigate the data transmission methods for programmable sensors, where the performance of communication systems is evaluated by the reconstructed images or videos rather than the transmission of sensor data itself. Usually, different reconstruction algorithms are designed for applications in high dynamic range imaging, video compressive sensing, or motion debluring. This task-aware property inspires a semantic communication framework for programmable sensors. In this work, a policy-gradient based reinforcement learning method is introduced to achieve the explicit trade-off between the compression (or transmission) rate and the image distortion. Numerical results show the superiority of the proposed methods over existing baselines

    Semantic Communications with Variable-Length Coding for Extended Reality

    Full text link
    Wireless extended reality (XR) has attracted wide attentions as a promising technology to improve users' mobility and quality of experience. However, the ultra-high data rate requirement of wireless XR has hindered its development for many years. To overcome this challenge, we develop a semantic communication framework, where semantically-unimportant information is highly-compressed or discarded in semantic coders, significantly improving the transmission efficiency. Besides, considering the fact that some source content may have less amount of semantic information or have higher tolerance to channel noise, we propose a universal variable-length semantic-channel coding method. In particular, we first use a rate allocation network to estimate the best code length for semantic information and then adjust the coding process accordingly. By adopting some proxy functions, the whole framework is trained in an end-to-end manner. Numerical results show that our semantic system significantly outperforms traditional transmission methods and the proposed variable-length coding scheme is superior to the fixed-length coding methods.Comment: 1. Update the performance of VL-SCC in Fig8. under new rate allocation architecture 2. Give a fair comparison between VL-SCC and SCC in Fig9. 3. fix the typo of LDPC rate (1/3 changed to 2/3) 4. Reduce L=32 to 16, and update the bp

    A CCBM-based generalized GKB iterative regularizing algorithm for inverse Cauchy problems

    Full text link
    This paper examines inverse Cauchy problems that are governed by a kind of elliptic partial differential equation. The inverse problems involve recovering the missing data on an inaccessible boundary from the measured data on an accessible boundary, which is severely ill-posed. By using the coupled complex boundary method (CCBM), which integrates both Dirichlet and Neumann data into a single Robin boundary condition, we reformulate the underlying problem into an operator equation. Based on this new formulation, we prove the existence of a unique solution even in cases with noisy data. A Golub-Kahan bidiagonalization (GKB) process together with Givens rotation is employed for iteratively solving the proposed operator equation. The regularizing property of the developed method, called CCBM-GKB, and its convergence rate results are proved under a posteriori stopping rule. Finally, a linear finite element method is used for the numerical realization of CCBM-GKB. Various numerical experiments demonstrate that CCBM-GKB is a kind of accelerated iterative regularization method, as it is much faster than the classic Landweber method

    In-Context Learning with Iterative Demonstration Selection

    Full text link
    Spurred by advancements in scale, large language models (LLMs) have demonstrated strong few-shot learning ability via in-context learning (ICL). However, the performance of ICL has been shown to be highly sensitive to the selection of few-shot demonstrations. Selecting the most suitable examples as context remains an ongoing challenge and an open problem. Existing literature has highlighted the importance of selecting examples that are diverse or semantically similar to the test sample while ignoring the fact that the optimal selection dimension, i.e., diversity or similarity, is task-specific. Leveraging the merits of both dimensions, we propose Iterative Demonstration Selection (IDS). Using zero-shot chain-of-thought reasoning (Zero-shot-CoT), IDS iteratively selects examples that are diverse but still strongly correlated with the test sample as ICL demonstrations. Specifically, IDS applies Zero-shot-CoT to the test sample before demonstration selection. The output reasoning path is then used to choose demonstrations that are prepended to the test sample for inference. The generated answer is accompanied by its corresponding reasoning path for extracting a new set of demonstrations in the next iteration. After several iterations, IDS adopts majority voting to obtain the final result. Through extensive experiments on tasks including commonsense reasoning, question answering, topic classification, and sentiment analysis, we demonstrate that IDS can consistently outperform existing ICL demonstration selection methods

    Combination Therapy With Fingolimod and Neural Stem Cells Promotes Functional Myelination

    Get PDF
    Myelination, which occurs predominantly postnatally and continues throughout life, is important for proper neurologic function of the mammalian central nervous system (CNS). We have previously demonstrated that the combination therapy of fingolimod (FTY720) and transplanted neural stem cells (NSCs) had a significantly enhanced therapeutic effect on the chronic stage of experimental autoimmune encephalomyelitis, an animal model of CNS autoimmunity, compared to using either one of them alone. However, reduced disease severity may be secondary to the immunomodulatory effects of FTY720 and NSCs, while whether this therapy directly affects myelinogenesis remains unknown. To investigate this important question, we used three myelination models under minimal or non-inflammatory microenvironments. Our results showed that FTY720 drives NSCs to differentiate into oligodendrocytes and promotes myelination in an ex vivo brain slice culture model, and in the developing CNS of healthy postnatal mice in vivo. Elevated levels of neurotrophic factors, e.g., brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor, were observed in the CNS of the treated infant mice. Further, FTY720 and NSCs efficiently prolonged the survival and improved sensorimotor function of shiverer mice. Together, these data demonstrate a direct effect of FTY720, beyond its known immunomodulatory capacity, in NSC differentiation and myelin development as a novel mechanism underlying its therapeutic effect in demyelinating diseases
    • …
    corecore