74 research outputs found
Logistic Regression Analysis of Factors Influencing the Effectiveness of Intensive Sound Masking Therapy in Patients with Tinnitus
Objectives: To investigate factors influencing the effectiveness intensive sound masking therapy on tinnitus using Logistic Regression Analysis.
Design: The study used a retrospective cross-section analysis.
Participants: 102 patients with tinnitus were recruited at the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, China.
Intervention: Intensive sound masking therapy was used as an intervention approach for patients with tinnitus.
Primary and secondary outcome measures: participants underwent audiological investigations and tinnitus pitch and loudness matching measurements, followed by intensive sound masking therapy. The Tinnitus Handicap Inventory (THI) was used as the outcome measure pre- and post-treatment. Multivariate logistic regression was performed to investigate the association of demographic and audiological factors with effective therapy.
Results: According to the THI score changes pre-and post-sound masking intervention, fifty-one participants were categorised into an effective group, the remaining 51 participants were placed in a non-effective group. Those in the effective group were significantly younger than those in the non-effective group (p=0.012). Significantly more participants had flat audiogram configurations in the effective group (p=0.04). Multivariable logistic regression analysis showed that age (OR=0.96, 95% CI: 0.93, 0.99, p=0.007), audiometric configuration (p=0.027) and THI score pre-treatment (OR=1.04, 95% CI: 1.02, 1.07, p<0.001) were significantly associated with therapeutic effectiveness. Further analysis showed that patients with flat audiometric configurations were 5.45 times more likely to respond to intervention than those with high-frequency steeply sloping audiograms (OR=5.45, 95% CI: 1.67, 17.86, p=0.005).
Conclusion: Audiometric configuration, age and THI scores appear to be predictive for the effectiveness of sound masking treatment. Gender, tinnitus characteristics and hearing threshold measures seem not to be related to treatment effectiveness. Further randomized control study is needed to provide further evidence of the effectiveness of prognostic factors in tinnitus interventions
Evaluation of the Observational Associations and Shared Genetics Between Glaucoma With Depression and Anxiety
PURPOSE: Glaucoma, a leading cause of blindness worldwide, is suspected to exhibit a notable association with psychological disturbances. This study aimed to investigate epidemiological associations and explore shared genetic architecture between glaucoma and mental traits, including depression and anxiety.METHODS: Multivariable logistic regression and Cox proportional hazards regression models were employed to investigate longitudinal associations based on UK Biobank. A stepwise approach was used to explore the shared genetic architecture. First, linkage disequilibrium score regression inferred global genetic correlations. Second, MiXeR analysis quantified the number of shared causal variants. Third, specific shared loci were detected through conditional/conjunctional false discovery rate (condFDR/conjFDR) analysis and characterized for biological insights. Finally, two-sample Mendelian randomization (MR) was conducted to investigate bidirectional causal associations.RESULTS: Glaucoma was significantly associated with elevated risks of hospitalized depression (hazard ratio [HR] = 1.54; 95% confidence interval [CI], 1.01-2.34) and anxiety (HR = 2.61; 95% CI, 1.70-4.01) compared to healthy controls. Despite the absence of global genetic correlations, MiXeR analysis revealed 300 variants shared between glaucoma and depression, and 500 variants shared between glaucoma and anxiety. Subsequent condFDR/conjFDR analysis discovered 906 single-nucleotide polymorphisms (SNPs) jointly associated with glaucoma and depression and two associated with glaucoma and anxiety. The MR analysis did not support robust causal associations but indicated the existence of pleiotropic genetic variants influencing both glaucoma and depression.CONCLUSIONS: Our study enhances the existing epidemiological evidence and underscores the polygenic overlap between glaucoma and mental traits. This observation suggests a correlation shaped by pleiotropic genetic variants rather than being indicative of direct causal relationships.</p
Evaluation of the Observational Associations and Shared Genetics Between Glaucoma With Depression and Anxiety
PURPOSE: Glaucoma, a leading cause of blindness worldwide, is suspected to exhibit a notable association with psychological disturbances. This study aimed to investigate epidemiological associations and explore shared genetic architecture between glaucoma and mental traits, including depression and anxiety.METHODS: Multivariable logistic regression and Cox proportional hazards regression models were employed to investigate longitudinal associations based on UK Biobank. A stepwise approach was used to explore the shared genetic architecture. First, linkage disequilibrium score regression inferred global genetic correlations. Second, MiXeR analysis quantified the number of shared causal variants. Third, specific shared loci were detected through conditional/conjunctional false discovery rate (condFDR/conjFDR) analysis and characterized for biological insights. Finally, two-sample Mendelian randomization (MR) was conducted to investigate bidirectional causal associations.RESULTS: Glaucoma was significantly associated with elevated risks of hospitalized depression (hazard ratio [HR] = 1.54; 95% confidence interval [CI], 1.01-2.34) and anxiety (HR = 2.61; 95% CI, 1.70-4.01) compared to healthy controls. Despite the absence of global genetic correlations, MiXeR analysis revealed 300 variants shared between glaucoma and depression, and 500 variants shared between glaucoma and anxiety. Subsequent condFDR/conjFDR analysis discovered 906 single-nucleotide polymorphisms (SNPs) jointly associated with glaucoma and depression and two associated with glaucoma and anxiety. The MR analysis did not support robust causal associations but indicated the existence of pleiotropic genetic variants influencing both glaucoma and depression.CONCLUSIONS: Our study enhances the existing epidemiological evidence and underscores the polygenic overlap between glaucoma and mental traits. This observation suggests a correlation shaped by pleiotropic genetic variants rather than being indicative of direct causal relationships.</p
Recommended from our members
Optical Coherence Tomography Angiography Reveals Distinct Retinal Structural and Microvascular Abnormalities in Cerebrovascular Disease.
Cerebrovascular disease (CeVD) is one of the leading global causes of death and severe disability. To date, retinal microangiopathy has become a reflection of cerebral microangiopathy, mirroring the vascular pathological modifications in vivo. To evaluate the retinal structure and microvasculature in patients with CeVD, we conducted a cross-sectional study in Zhongshan Ophthalmic Center and Department of Neurology of Third Affiliated Hospital, Sun Yat-sen University using optical coherence tomography angiography (OCTA). CeVD patients (n = 121; 238 eyes) and healthy controls (n = 44; 57 eyes) were included in the analysis. The CeVD group showed significant thinning of the peripapillary retinal nerve fiber layer (pRNFL) thickness in the temporal and nasal quadrants, and thinning of the macular ganglion cell-inner plexiform layer (GC-IPL) in the inferior quadrant, while macular microvasculature reduction was prominent in all nine quadrants. There were significant correlations between OCTA parameters, visual acuity, and transcranial doppler parameters in the CeVD group. The specific structural parameters combining microvasculature indices showed the best diagnostic accuracies (AUC = 0.918) to discriminate CeVD group from healthy controls. To conclude, we proved that OCTA reveals specific patterns of retinal structural changes and extensive macular microvascular changes in CeVD. Additionally, these retinal abnormalities could prove useful disease biomarkers in the management of individuals at high risk of debilitating complications from a cerebrovascular event
Recommended from our members
Comparison of macular structural and vascular changes in neuromyelitis optica spectrum disorder and primary open angle glaucoma: a cross-sectional study.
AIMS: To compare macular structure and vasculature between neuromyelitis optica spectrum disorder (NMOSD) and primary open angle glaucoma (POAG) using optical coherence tomography angiography. METHODS: NMOSD patients (n=124) with/without a history of optic neuritis (ON) (NMO+ON: 113 eyes; NMO-ON: 95 eyes), glaucomatous patients (n=102) with early/advanced glaucoma (G-E: 74 eyes; G-A: 50 eyes) and healthy controls (n=62; 90 eyes) were imaged. The main outcome measures were macular ganglion cell-inner plexiform layer (GC-IPL) thickness, vessel density (VD) and perfusion density (PD) in the superficial capillary plexus, and diagnostic capabilities of the parameters as calculated by area under the curve (AUC). RESULTS: Significant losses in GC-IPL, VD and PD were detected in both patients with NMOSD and POAG. With matched losses in the peripapillary retinal nerve fibre layer, NMOSD group showed significant thinning of GC-IPL in the nasal-superior quadrant, whereas in POAG group, significant thinning was observed in the inferior and temporal-inferior quadrants. GC-IPL thinning was more prominent in the superior, nasal-superior and nasal-inferior quadrants in NMO+ON eyes. In G-A eyes, significant GC-IPL thinning was seen in the temporal-inferior quadrant. The specific structural parameters combining VD and foveal avascular zone (FAZ) indices showed the best diagnostic accuracies. The FAZ area in eyes with NMOSD was significantly smaller than the eyes of healthy controls and POAG. CONCLUSION: NMOSD and POAG have specific patterns of macular structural and vascular changes associated with pathophysiology. Our results indicate that FAZ could be a sensitive biomarker of macular changes in NMOSD
Recommended from our members
Comparison of macular structural and vascular changes in neuromyelitis optica spectrum disorder and primary open angle glaucoma: a cross-sectional study.
GWAS-by-subtraction reveals an IOP-independent component of primary open angle glaucoma
The etiology of primary open angle glaucoma is constituted by both intraocular pressure-dependent and intraocular pressure-independent mechanisms. However, GWASs of traits affecting primary open angle glaucoma through mechanisms independent of intraocular pressure remains limited. Here, we address this gap by subtracting the genetic effects of a GWAS for intraocular pressure from a GWAS for primary open angle glaucoma to reveal the genetic contribution to primary open angle glaucoma via intraocular pressure-independent mechanisms. Seventeen independent genome-wide significant SNPs were associated with the intraocular pressure-independent component of primary open angle glaucoma. Of these, 7 are located outside known normal tension glaucoma loci, 11 are located outside known intraocular pressure loci, and 2 are novel primary open angle glaucoma loci. The intraocular pressure-independent genetic component of primary open angle glaucoma is associated with glaucoma endophenotypes, while the intraocular pressure-dependent component is associated with blood pressure and vascular permeability. A genetic risk score for the intraocular pressure-independent component of primary open angle glaucoma is associated with 26 different retinal micro-vascular features, which contrasts with the genetic risk score for the intraocular pressure-dependent component. Increased understanding of these intraocular pressure-dependent and intraocular pressure-independent components provides insights into the pathogenesis of glaucoma
Prediction of myopia development among Chinese school-aged children using refraction data from electronic medical records: A retrospective, multicentre machine learning study
Background
Electronic medical records provide large-scale real-world clinical data for use in developing clinical decision systems. However, sophisticated methodology and analytical skills are required to handle the large-scale datasets necessary for the optimisation of prediction accuracy. Myopia is a common cause of vision loss. Current approaches to control myopia progression are effective but have significant side effects. Therefore, identifying those at greatest risk who should undergo targeted therapy is of great clinical importance. The objective of this study was to apply big data and machine learning technology to develop an algorithm that can predict the onset of high myopia, at specific future time points, among Chinese school-aged children.
Methods and findings
Real-world clinical refraction data were derived from electronic medical record systems in 8 ophthalmic centres from January 1, 2005, to December 30, 2015. The variables of age, spherical equivalent (SE), and annual progression rate were used to develop an algorithm to predict SE and onset of high myopia (SE ≤ −6.0 dioptres) up to 10 years in the future. Random forest machine learning was used for algorithm training and validation. Electronic medical records from the Zhongshan Ophthalmic Centre (a major tertiary ophthalmic centre in China) were used as the training set. Ten-fold cross-validation and out-of-bag (OOB) methods were applied for internal validation. The remaining 7 independent datasets were used for external validation. Two population-based datasets, which had no participant overlap with the ophthalmic-centre-based datasets, were used for multi-resource validation testing. The main outcomes and measures were the area under the curve (AUC) values for predicting the onset of high myopia over 10 years and the presence of high myopia at 18 years of age. In total, 687,063 multiple visit records (≥3 records) of 129,242 individuals in the ophthalmic-centre-based electronic medical record databases and 17,113 follow-up records of 3,215 participants in population-based cohorts were included in the analysis. Our algorithm accurately predicted the presence of high myopia in internal validation (the AUC ranged from 0.903 to 0.986 for 3 years, 0.875 to 0.901 for 5 years, and 0.852 to 0.888 for 8 years), external validation (the AUC ranged from 0.874 to 0.976 for 3 years, 0.847 to 0.921 for 5 years, and 0.802 to 0.886 for 8 years), and multi-resource testing (the AUC ranged from 0.752 to 0.869 for 4 years). With respect to the prediction of high myopia development by 18 years of age, as a surrogate of high myopia in adulthood, the algorithm provided clinically acceptable accuracy over 3 years (the AUC ranged from 0.940 to 0.985), 5 years (the AUC ranged from 0.856 to 0.901), and even 8 years (the AUC ranged from 0.801 to 0.837). Meanwhile, our algorithm achieved clinically acceptable prediction of the actual refraction values at future time points, which is supported by the regressive performance and calibration curves. Although the algorithm achieved balanced and robust performance, concerns about the compromised quality of real-world clinical data and over-fitting issues should be cautiously considered.
Conclusions
To our knowledge, this study, for the first time, used large-scale data collected from electronic health records to demonstrate the contribution of big data and machine learning approaches to improved prediction of myopia prognosis in Chinese school-aged children. This work provides evidence for transforming clinical practice, health policy-making, and precise individualised interventions regarding the practical control of school-aged myopia.This study was funded by the National
Key R&D Program of China (2018YFC0116500),
the National Natural Science Foundation of China
(91546101, 81822010), the Guangdong Science
and Technology Innovation Leading Talents
(2017TX04R031), and Youth Pearl River Scholar in
Guangdong (2016)
Physicochemical Characterizations, Digestibility, and Lipolysis Inhibitory Effects of Highland Barley Resistant Starches Prepared by Physical and Enzymatic Methods
This study aimed to investigate the differences in the physicochemical and structural characteristics, digestibility, and lipolysis inhibitory potential in vitro of highland barley resistant starches (HBRSs) prepared by autoclaving (HBSA), microwave-assisted autoclaving (HBSM), isoamylase (HBSI) and pullulanase (HBSP) debranching modifications. Results revealed that the resistant starch content of native starch was significantly elevated after modifications. HBSA and HBSM showed distinctly higher swelling power and water-binding capacities along with lower amylose amounts and solubilities than those of HBSI and HBSP (p B- and V-type polymorphs. Meanwhile, HBSA and HBSM were characterized by their high degree of the amorphous region with a mixture of B- and V-type polymorphs. Physical and enzymatic modifications resulted in different functionalities of HBRSs, among which HBSP showed the lowest digestibility and HBSM exhibited the highest inhibitory activity on lipolysis due to their structure and structure-based morphology and particle size. This study provided significant insights into the development of native starch from highland barley as an alternative functional food
- …