474 research outputs found
The antenna of horse stomach bot flies:morphology and phylogenetic implications (Oestridae, Gasterophilinae: <i>Gasterophilus</i> Leach)
Antennae are among the most elaborate sensory organs in adult flies, and they provide rich information for phylogenic studies. The antennae of five out of eight species of Gasterophilus Leach (G. haemorrhoidalis (Linnaeus), G. intestinalis (De Geer), G. nasalis (Linnaeus), G. nigricornis (Loew) and G. pecorum (Fabricius)), were examined using scanning electron microscopy. The general morphology, including distribution, type, size, and ultrastructure of antennal sensilla were presented, and the definition of auriculate sensilla and sensory pits were updated and clarified. Eighteen antennal characters were selected to construct the first species-level phylogeny of this genus. The monophyly of Gasterophilus was supported by the presence of coeloconic sensilla III on the antennal arista. The species-level cladogram showed G. pecorum branching off at the base, and the remaining species forming the topology (G. intestinalis+ (G. haemorrhoidalis+ (G. nasalis+ G. nigricornis))). Our research shows the importance of the antennal ultrastructure as a reliable source for phylogenetic analysis
Qiditangshen Granules Alleviates Diabetic Nephropathy Podocyte Injury: A Network Pharmacology Study and Experimental Validation in Vivo and Vitro
BACKGROUND: QiDiTangShen granules (QDTS), a traditional Chinese medicine (TCM) compound prescription, have remarkable efficacy in diabetic nephropathy (DN) patients, and their pharmacological mechanism needs further exploration.
METHODS: According to the active ingredients and targets of the QDTS in the TCMSP database, the network pharmacology of QDTS was investigated. The potential active ingredients were chosen based on the oral bioavailability and the drug similarity index. At the same time, targets for DN-related disease were obtained from GeneCards, OMIM, PharmGKB, TTD, and DrugBank. The TCM-component-target network and the protein-protein interaction (PPI) network were constructed with the Cytoscape and STRING platforms, respectively, and then the core targets of DN were selected with CytoNCA. GO and KEGG enrichment analysis using R software. Molecular docking to identify the core targets of QDTS for DN. In vivo, db/db mice were treated as DN models, and the urine microalbuminuria, the pathological changes in the kidney and the protein expression levels of p-PI3K, p-Akt, JUN, nephrin and synaptopodin were detected by immunohistochemistry, immunofluorescence method and Western blotting. After QDTS was used in vitro, the protein expression of mouse podocyte clone-5 (MPC5) cells was detected by immunohistochemistry, immunofluorescence and Western blot.
RESULTS: Through network pharmacology analysis, 153 potential targets for DN in QDTS were identified, 19 of which were significant. The KEGG enrichment analysis indicated that QDTS might have therapeutic effects on IL-17, TNF, AGE-RAGE, PI3K-Akt, HIF-1, and EGFR through interfering with Akt1 and JUN. The main active ingredients in QDTS are
CONCLUSION: Through network pharmacology, in vivo and in vitro experiments, QDTS has been shown to improve the urine microalbuminuria and renal pathology in DN, and to reduce podocyte damage via the PI3K/Akt pathway
Edge-Mediated Skyrmion Chain and Its Collective Dynamics in a Confined Geometry
The emergence of a topologically nontrivial vortex-like magnetic structure,
the magnetic skyrmion, has launched new concepts for memory devices. There,
extensive studies have theoretically demonstrated the ability to encode
information bits by using a chain of skyrmions in one-dimensional nanostripes.
Here, we report the first experimental observation of the skyrmion chain in
FeGe nanostripes by using high resolution Lorentz transmission electron
microscopy. Under an applied field normal to the nanostripes plane, we observe
that the helical ground states with distorted edge spins would evolves into
individual skyrmions, which assemble in the form of chain at low field and move
collectively into the center of nanostripes at elevated field. Such skyrmion
chain survives even as the width of nanostripe is much larger than the single
skyrmion size. These discovery demonstrates new way of skyrmion formation
through the edge effect, and might, in the long term, shed light on the
applications.Comment: 7 pages, 3 figure
Monolayer Excitonic Laser
Recently, two-dimensional (2D) materials have opened a new paradigm for
fundamental physics explorations and device applications. Unlike gapless
graphene, monolayer transition metal dichalcogenide (TMDC) has new optical
functionalities for next generation ultra-compact electronic and
opto-electronic devices. When TMDC crystals are thinned down to monolayers,
they undergo an indirect to direct bandgap transition, making it an outstanding
2D semiconductor. Unique electron valley degree of freedom, strong light matter
interactions and excitonic effects were observed. Enhancement of spontaneous
emission has been reported on TMDC monolayers integrated with photonic crystal
and distributed Bragg reflector microcavities. However, the coherent light
emission from 2D monolayer TMDC has not been demonstrated, mainly due to that
an atomic membrane has limited material gain volume and is lack of optical mode
confinement. Here, we report the first realization of 2D excitonic laser by
embedding monolayer tungsten disulfide (WS2) in a microdisk resonator. Using a
whispering gallery mode (WGM) resonator with a high quality factor and optical
confinement, we observed bright excitonic lasing in visible wavelength. The
Si3N4/WS2/HSQ sandwich configuration provides a strong feedback and mode
overlap with monolayer gain. This demonstration of 2D excitonic laser marks a
major step towards 2D on-chip optoelectronics for high performance optical
communication and computing applications.Comment: 15 pages, 4 figure
- …