4,713 research outputs found

    A new potential radiosensitizer: ammonium persulfate modified WCNTs

    Get PDF
    Radiotherapy plays a very important role in cancer treatment. Radiosensitizers have been widely used to enhance the radiosensitivity of cancer cells at given radiations. Here we fabricate multi-walled carbon nanotubes with ammonium persulfate, and get very short samples with 30-50 nanometer length. Cell viability assay show that f-WCNTs induce cell death significantly. We hypothesize that free radicals originated from hydroxyl and carbonyl groups on the surface of f-WCNTs lead cell damage

    Polyethylenimine-Modified Multiwalled Carbon Nanotubes for Plasmid DNA Gene Delivery

    Get PDF
    An efficient molecular delivery technique based on the transporting high-molecular-weight PEI 600K-modified multiwalled carbon nanotubes (PEI 600K-MWCNTs) into cell membranes is reported. The PEI 600K-MWCNTs exhibit low cytotoxicity and its associated plasmid DNA (pDNA) is delivered to cells efficiently, and the green fluorescent protein (GFP) levels up to 18 times higher than that of naked DNA were observed

    Efficient Asymmetric Reduction of 4-(Trimethylsilyl)-3-Butyn-2-One by Candida parapsilosis Cells in an Ionic Liquid-Containing System

    Get PDF
    Hydrophilic ionic liquids (ILs) were employed as green solvents to construct an IL-containing co-solvent system for improving the asymmetric reduction of 4-(trimethylsilyl)-3-butyn-2-one by immobilized Candida parapsilosis cells. Among 14 hydrophilic ILs examined, 1-(2′-hydroxyl)ethyl-3-methylimidazolium nitrate (C2OHMIM·NO3) was considered as the most suitable IL for the bioreduction with the fastest initial reaction rate, the highest yield and the highest product e.e., which may be due to the good biocompatibility with the cells. For a better understanding of the bioreduction performed in the C2OHMIM·NO3-containing co-solvent system, the effects of several crucial variables were systematically investigated. The optimal C2OHMIM·NO3 content, substrate concentration, buffer pH, co-substrate concentration and temperature were 10% (v/v), 3.0 mmol/L, 5.0, 98.1 mmol/L and 30°C, respectively. Under the optimal conditions, the initial reaction rate, the maximum yield and the product e.e. were 17.3 µmol/h gcell, 95.2% and >99.9%, respectively, which are much better than the corresponding results previously reported. Moreover, the immobilized cells remained more than 83% of their initial activity even after being used repeatedly for 10 batches in the C2OHMIM·NO3-containing system, exhibiting excellent operational stability

    Towards Understanding Astrophysical Effects of Nuclear Symmetry Energy

    Full text link
    Determining the Equation of State (EOS) of dense neutron-rich nuclear matter is a shared goal of both nuclear physics and astrophysics. Except possible phase transitions, the density dependence of nuclear symmetry \esym is the most uncertain part of the EOS of neutron-rich nucleonic matter especially at supra-saturation densities. Much progresses have been made in recent years in predicting the symmetry energy and understanding why it is still very uncertain using various microscopic nuclear many-body theories and phenomenological models. Simultaneously, significant progresses have also been made in probing the symmetry energy in both terrestrial nuclear laboratories and astrophysical observatories. In light of the GW170817 event as well as ongoing or planned nuclear experiments and astrophysical observations probing the EOS of dense neutron-rich matter, we review recent progresses and identify new challenges to the best knowledge we have on several selected topics critical for understanding astrophysical effects of the nuclear symmetry energy.Comment: 77 pages. Invited Review Article, EPJA (2019) in pres
    • …
    corecore