11,316 research outputs found
The First Comparison Between Swarm-C Accelerometer-Derived Thermospheric Densities and Physical and Empirical Model Estimates
The first systematic comparison between Swarm-C accelerometer-derived
thermospheric density and both empirical and physics-based model results using
multiple model performance metrics is presented. This comparison is performed
at the satellite's high temporal 10-s resolution, which provides a meaningful
evaluation of the models' fidelity for orbit prediction and other space weather
forecasting applications. The comparison against the physical model is
influenced by the specification of the lower atmospheric forcing, the
high-latitude ionospheric plasma convection, and solar activity. Some insights
into the model response to thermosphere-driving mechanisms are obtained through
a machine learning exercise. The results of this analysis show that the
short-timescale variations observed by Swarm-C during periods of high solar and
geomagnetic activity were better captured by the physics-based model than the
empirical models. It is concluded that Swarm-C data agree well with the
climatologies inherent within the models and are, therefore, a useful data set
for further model validation and scientific research.Comment: https://goo.gl/n4QvU
A statistical framework for the design of microarray experiments and effective detection of differential gene expression
Four reasons why you might wish to read this paper: 1. We have devised a new
statistical T test to determine differentially expressed genes (DEG) in the
context of microarray experiments. This statistical test adds a new member to
the traditional T-test family. 2. An exact formula for calculating the
detection power of this T test is presented, which can also be fairly easily
modified to cover the traditional T tests. 3. We have presented an accurate yet
computationally very simple method to estimate the fraction of non-DEGs in a
set of genes being tested. This method is superior to an existing one which is
computationally much involved. 4. We approach the multiple testing problem from
a fresh angle, and discuss its relation to the classical Bonferroni procedure
and to the FDR (false discovery rate) approach. This is most useful in the
analysis of microarray data, where typically several thousands of genes are
being tested simultaneously.Comment: 9 pages, 1 table; to appear in Bioinformatic
COMPUTER ADOPTION PATTERNS OF U.S. SMALL BUSINESSES
This paper analyzes computer adoption patterns of U.S. small businesses. First, the association between computer use and firm performance is investigated with a linear model while controlling for various characteristics of the firm and its owner. Then an ordered probit model is used to model small business computer adoption decision. And computer adoption portfolios are also analyzed at the end.Research and Development/Tech Change/Emerging Technologies,
- …