108 research outputs found

    Fewer, tastier tomatoes: Expanding the use of saltwater in agriculture

    Get PDF
    As the world experiences increasing freshwater crises, researchers turn to saline waters. Can the use of saltwater be expanded? The development of appropriate practices for the use of saline waters for irrigation requires an adequate understanding of how salts affect waters, soils and plants, as FAO states in their book The use of saline waters for crop production, 1992. Plants can grow in saline waters, if the salinity of the soil is controlled and monitored, and the soil salt content is not allowed to increase past a level that damages the plants. Irrigation of salt tolerant plants with slightly saline waters offers a substantial opportunity to increase the yearly crop production of the world

    Biologically-Plausible Topology Improved Spiking Actor Network for Efficient Deep Reinforcement Learning

    Full text link
    The success of Deep Reinforcement Learning (DRL) is largely attributed to utilizing Artificial Neural Networks (ANNs) as function approximators. Recent advances in neuroscience have unveiled that the human brain achieves efficient reward-based learning, at least by integrating spiking neurons with spatial-temporal dynamics and network topologies with biologically-plausible connectivity patterns. This integration process allows spiking neurons to efficiently combine information across and within layers via nonlinear dendritic trees and lateral interactions. The fusion of these two topologies enhances the network's information-processing ability, crucial for grasping intricate perceptions and guiding decision-making procedures. However, ANNs and brain networks differ significantly. ANNs lack intricate dynamical neurons and only feature inter-layer connections, typically achieved by direct linear summation, without intra-layer connections. This limitation leads to constrained network expressivity. To address this, we propose a novel alternative for function approximator, the Biologically-Plausible Topology improved Spiking Actor Network (BPT-SAN), tailored for efficient decision-making in DRL. The BPT-SAN incorporates spiking neurons with intricate spatial-temporal dynamics and introduces intra-layer connections, enhancing spatial-temporal state representation and facilitating more precise biological simulations. Diverging from the conventional direct linear weighted sum, the BPT-SAN models the local nonlinearities of dendritic trees within the inter-layer connections. For the intra-layer connections, the BPT-SAN introduces lateral interactions between adjacent neurons, integrating them into the membrane potential formula to ensure accurate spike firing.Comment: Work in Progres

    Attention-free Spikformer: Mixing Spike Sequences with Simple Linear Transforms

    Full text link
    By integrating the self-attention capability and the biological properties of Spiking Neural Networks (SNNs), Spikformer applies the flourishing Transformer architecture to SNNs design. It introduces a Spiking Self-Attention (SSA) module to mix sparse visual features using spike-form Query, Key, and Value, resulting in the State-Of-The-Art (SOTA) performance on numerous datasets compared to previous SNN-like frameworks. In this paper, we demonstrate that the Spikformer architecture can be accelerated by replacing the SSA with an unparameterized Linear Transform (LT) such as Fourier and Wavelet transforms. These transforms are utilized to mix spike sequences, reducing the quadratic time complexity to log-linear time complexity. They alternate between the frequency and time domains to extract sparse visual features, showcasing powerful performance and efficiency. We conduct extensive experiments on image classification using both neuromorphic and static datasets. The results indicate that compared to the SOTA Spikformer with SSA, Spikformer with LT achieves higher Top-1 accuracy on neuromorphic datasets (i.e., CIFAR10-DVS and DVS128 Gesture) and comparable Top-1 accuracy on static datasets (i.e., CIFAR-10 and CIFAR-100). Furthermore, Spikformer with LT achieves approximately 29-51% improvement in training speed, 61-70% improvement in inference speed, and reduces memory usage by 4-26% due to not requiring learnable parameters.Comment: Under Revie

    ODE-based Recurrent Model-free Reinforcement Learning for POMDPs

    Full text link
    Neural ordinary differential equations (ODEs) are widely recognized as the standard for modeling physical mechanisms, which help to perform approximate inference in unknown physical or biological environments. In partially observable (PO) environments, how to infer unseen information from raw observations puzzled the agents. By using a recurrent policy with a compact context, context-based reinforcement learning provides a flexible way to extract unobservable information from historical transitions. To help the agent extract more dynamics-related information, we present a novel ODE-based recurrent model combines with model-free reinforcement learning (RL) framework to solve partially observable Markov decision processes (POMDPs). We experimentally demonstrate the efficacy of our methods across various PO continuous control and meta-RL tasks. Furthermore, our experiments illustrate that our method is robust against irregular observations, owing to the ability of ODEs to model irregularly-sampled time series.Comment: Accepted by NeurIPS 202

    Local Convolution Enhanced Global Fourier Neural Operator For Multiscale Dynamic Spaces Prediction

    Full text link
    Neural operators extend the capabilities of traditional neural networks by allowing them to handle mappings between function spaces for the purpose of solving partial differential equations (PDEs). One of the most notable methods is the Fourier Neural Operator (FNO), which is inspired by Green's function method and approximate operator kernel directly in the frequency domain. In this work, we focus on predicting multiscale dynamic spaces, which is equivalent to solving multiscale PDEs. Multiscale PDEs are characterized by rapid coefficient changes and solution space oscillations, which are crucial for modeling atmospheric convection and ocean circulation. To solve this problem, models should have the ability to capture rapid changes and process them at various scales. However, the FNO only approximates kernels in the low-frequency domain, which is insufficient when solving multiscale PDEs. To address this challenge, we propose a novel hierarchical neural operator that integrates improved Fourier layers with attention mechanisms, aiming to capture all details and handle them at various scales. These mechanisms complement each other in the frequency domain and encourage the model to solve multiscale problems. We perform experiments on dynamic spaces governed by forward and reverse problems of multiscale elliptic equations, Navier-Stokes equations and some other physical scenarios, and reach superior performance in existing PDE benchmarks, especially equations characterized by rapid coefficient variations.Comment: 10 pages, 4 figure

    Tuning Synaptic Connections instead of Weights by Genetic Algorithm in Spiking Policy Network

    Full text link
    Learning from the interaction is the primary way biological agents know about the environment and themselves. Modern deep reinforcement learning (DRL) explores a computational approach to learning from interaction and has significantly progressed in solving various tasks. However, the powerful DRL is still far from biological agents in energy efficiency. Although the underlying mechanisms are not fully understood, we believe that the integration of spiking communication between neurons and biologically-plausible synaptic plasticity plays a prominent role. Following this biological intuition, we optimize a spiking policy network (SPN) by a genetic algorithm as an energy-efficient alternative to DRL. Our SPN mimics the sensorimotor neuron pathway of insects and communicates through event-based spikes. Inspired by biological research that the brain forms memories by forming new synaptic connections and rewires these connections based on new experiences, we tune the synaptic connections instead of weights in SPN to solve given tasks. Experimental results on several robotic control tasks show that our method can achieve the performance level of mainstream DRL methods and exhibit significantly higher energy efficiency

    Population-coding and Dynamic-neurons improved Spiking Actor Network for Reinforcement Learning

    Full text link
    With the Deep Neural Networks (DNNs) as a powerful function approximator, Deep Reinforcement Learning (DRL) has been excellently demonstrated on robotic control tasks. Compared to DNNs with vanilla artificial neurons, the biologically plausible Spiking Neural Network (SNN) contains a diverse population of spiking neurons, making it naturally powerful on state representation with spatial and temporal information. Based on a hybrid learning framework, where a spike actor-network infers actions from states and a deep critic network evaluates the actor, we propose a Population-coding and Dynamic-neurons improved Spiking Actor Network (PDSAN) for efficient state representation from two different scales: input coding and neuronal coding. For input coding, we apply population coding with dynamically receptive fields to directly encode each input state component. For neuronal coding, we propose different types of dynamic-neurons (containing 1st-order and 2nd-order neuronal dynamics) to describe much more complex neuronal dynamics. Finally, the PDSAN is trained in conjunction with deep critic networks using the Twin Delayed Deep Deterministic policy gradient algorithm (TD3-PDSAN). Extensive experimental results show that our TD3-PDSAN model achieves better performance than state-of-the-art models on four OpenAI gym benchmark tasks. It is an important attempt to improve RL with SNN towards the effective computation satisfying biological plausibility.Comment: 27 pages, 11 figures, accepted by Journal of Neural Network
    • …
    corecore