127 research outputs found

    Disentangled Variational Autoencoder for Emotion Recognition in Conversations

    Full text link
    In Emotion Recognition in Conversations (ERC), the emotions of target utterances are closely dependent on their context. Therefore, existing works train the model to generate the response of the target utterance, which aims to recognise emotions leveraging contextual information. However, adjacent response generation ignores long-range dependencies and provides limited affective information in many cases. In addition, most ERC models learn a unified distributed representation for each utterance, which lacks interpretability and robustness. To address these issues, we propose a VAD-disentangled Variational AutoEncoder (VAD-VAE), which first introduces a target utterance reconstruction task based on Variational Autoencoder, then disentangles three affect representations Valence-Arousal-Dominance (VAD) from the latent space. We also enhance the disentangled representations by introducing VAD supervision signals from a sentiment lexicon and minimising the mutual information between VAD distributions. Experiments show that VAD-VAE outperforms the state-of-the-art model on two datasets. Further analysis proves the effectiveness of each proposed module and the quality of disentangled VAD representations. The code is available at https://github.com/SteveKGYang/VAD-VAE.Comment: Accepted by IEEE Transactions on Affective Computin

    MentalLLaMA: Interpretable Mental Health Analysis on Social Media with Large Language Models

    Full text link
    With the development of web technology, social media texts are becoming a rich source for automatic mental health analysis. As traditional discriminative methods bear the problem of low interpretability, the recent large language models have been explored for interpretable mental health analysis on social media, which aims to provide detailed explanations along with predictions. The results show that ChatGPT can generate approaching-human explanations for its correct classifications. However, LLMs still achieve unsatisfactory classification performance in a zero-shot/few-shot manner. Domain-specific finetuning is an effective solution, but faces 2 challenges: 1) lack of high-quality training data. 2) no open-source LLMs for interpretable mental health analysis were released to lower the finetuning cost. To alleviate these problems, we build the first multi-task and multi-source interpretable mental health instruction (IMHI) dataset on social media, with 105K data samples. The raw social media data are collected from 10 existing sources covering 8 mental health analysis tasks. We use expert-written few-shot prompts and collected labels to prompt ChatGPT and obtain explanations from its responses. To ensure the reliability of the explanations, we perform strict automatic and human evaluations on the correctness, consistency, and quality of generated data. Based on the IMHI dataset and LLaMA2 foundation models, we train MentalLLaMA, the first open-source LLM series for interpretable mental health analysis with instruction-following capability. We also evaluate the performance of MentalLLaMA on the IMHI evaluation benchmark with 10 test sets, where their correctness for making predictions and the quality of explanations are examined. The results show that MentalLLaMA approaches state-of-the-art discriminative methods in correctness and generates high-quality explanations.Comment: Work in progres

    Dynamic Object Tracking for Quadruped Manipulator with Spherical Image-Based Approach

    Full text link
    Exactly estimating and tracking the motion of surrounding dynamic objects is one of important tasks for the autonomy of a quadruped manipulator. However, with only an onboard RGB camera, it is still a challenging work for a quadruped manipulator to track the motion of a dynamic object moving with unknown and changing velocities. To address this problem, this manuscript proposes a novel image-based visual servoing (IBVS) approach consisting of three elements: a spherical projection model, a robust super-twisting observer, and a model predictive controller (MPC). The spherical projection model decouples the visual error of the dynamic target into linear and angular ones. Then, with the presence of the visual error, the robustness of the observer is exploited to estimate the unknown and changing velocities of the dynamic target without depth estimation. Finally, the estimated velocity is fed into the model predictive controller (MPC) to generate joint torques for the quadruped manipulator to track the motion of the dynamical target. The proposed approach is validated through hardware experiments and the experimental results illustrate the approach's effectiveness in improving the autonomy of the quadruped manipulator

    Possible mechanisms of treatment for spinal cord injury repair with tanshinone IIA

    Get PDF
    Tanshinone IIA serves as a coenzyme for certain biochemical reactions, exhibiting various pharmacological effects in the treatment of neurological diseases including spinal cord injury (SCI), however, its working mechanism in the treatment of SCI is not clear. Based on previous research, we believe that tanshinone IIA promotes the survival and repair of nerves after spinal cord injury through its pharmacological effects such as anti-inflammatory, antioxidant, and prevention of cellular apoptosis in the spinal cord

    Transport Anisotropy in One-dimensional Graphene Superlattice in the High Kronig-Penney Potential Limit

    Full text link
    One-dimensional graphene superlattice subjected to strong Kronig-Penney (KP) potential is promising for achieving electron lensing effect, while previous studies utilizing the modulated dielectric gates can only yield a moderate, spatially dispersed potential profile. Here, we realize high KP potential modulation of graphene via nanoscale ferroelectric domain gating. Graphene transistors are fabricated on PbZr0.2_{0.2}Ti0.8_{0.8}O3_{3} back-gates patterned with periodic, 100-200 nm wide stripe domains. Due to band reconstruction, the h-BN top-gating induces satellite Dirac points in samples with current along the superlattice vector s^\hat{s}, a feature absent in samples with current perpendicular to s^\hat{s}. The satellite Dirac point position scales with the superlattice period (LL) as Lβ\propto L^{\beta}, with β=1.18±0.06\beta = -1.18 \pm 0.06. These results can be well explained by the high KP potential scenario, with the Fermi velocity perpendicular to s^\hat{s} quenched to about 1% of that for pristine graphene. Our study presents a promising material platform for realizing electron supercollimation and investigating flat band phenomena.Comment: 12 pages, 5 figures, and Supplemental Materia
    corecore