46 research outputs found

    Particle manipulation with magnetic artificial cilia

    Get PDF

    Particle manipulation with magnetic artificial cilia

    Get PDF

    Artificial mini-heart:An internal micropump based on magnetically actuated artificial cilia that can induce flows in a microfluidic channel network

    Get PDF
    Here we report the fabrication of an internal micropump based on magnetically actuated artificial cilia (MAAC) that functions like an artificial mini-heart. The micropump can provide versatile flows in a microfluidic channel network, when the MAAC are actuated to perform a tilted conical movement. Compared to other pumping methods, this in-situ micro-pump does not need tubing or electrical connections, which reduces the usage of reagents by minimizing “dead volumes”, allows the construction of a more compact system, avoids undesirable electrical effects and accommodates a wide range of fluids

    Artificial mini-heart:An internal micropump based on magnetically actuated artificial cilia that can induce flows in a microfluidic channel network

    Get PDF
    Here we report the fabrication of an internal micropump based on magnetically actuated artificial cilia (MAAC) that functions like an artificial mini-heart. The micropump can provide versatile flows in a microfluidic channel network, when the MAAC are actuated to perform a tilted conical movement. Compared to other pumping methods, this in-situ micro-pump does not need tubing or electrical connections, which reduces the usage of reagents by minimizing “dead volumes”, allows the construction of a more compact system, avoids undesirable electrical effects and accommodates a wide range of fluids

    A concise review of microfluidic particle manipulation methods

    Get PDF
    Particle manipulation is often required in many applications such as bioanalysis, disease diagnostics, drug delivery and self-cleaning surfaces. The fast progress in micro- and nano-engineering has contributed to the rapid development of a variety of technologies to manipulate particles including more established methods based on microfluidics, as well as recently proposed innovative methods that still are in the initial phases of development, based on self-driven microbots and artificial cilia. Here, we review these techniques with respect to their operation principles and main applications. We summarize the shortcomings and give perspectives on the future development of particle manipulation techniques. Rather than offering an in-depth, detailed, and complete account of all the methods, this review aims to provide a broad but concise overview that helps to understand the overall progress and current status of the diverse particle manipulation methods. The two novel developments, self-driven microbots and artificial cilia-based manipulation, are highlighted in more detail

    Miniaturized metachronal magnetic artificial cilia

    Get PDF
    Biological cilia, hairlike organelles on cell surfaces, often exhibit collective wavelike motion known as metachrony, which helps generating fluid flow. Inspired by nature, researchers have developed artificial cilia as microfluidic actuators, exploring several methods to mimic the metachrony. However, reported methods are difficult to miniaturize because they require either control of individual cilia properties or the generation of a complex external magnetic field. We introduce a concept that generates metachronal motion of magnetic artificial cilia (MAC), even though the MAC are all identical, and the applied external magnetic field is uniform. This is achieved by integrating a paramagnetic substructure in the substrate underneath the MAC. Uniquely, we can create both symplectic and antiplectic metachrony by changing the relative positions of MAC and substructure. We demonstrate the flow generation of the two metachronal motions in both high and low Reynolds number conditions. Our research marks a significant milestone by breaking the size limitation barrier in metachronal artificial cilia. This achievement not only showcases the potential of nature-inspired engineering but also opens up a host of exciting opportunities for designing and optimizing microsystems with enhanced fluid manipulation capabilities

    Controlled Multidirectional Particle Transportation by Magnetic Artificial Cilia

    Get PDF
    Manipulation of particles in a controllable manner is highly desirable in many applications. Inspired by biological cilia, this article experimentally and numerically demonstrates a versatile particle transportation platform consisting of arrays of magnetic artificial cilia (MAC) actuated by a rotating magnet. By performing a tilted conical motion, the MAC are capable of transporting particles on their tips, along designated directions that can be fully controlled by the externally applied magnetic field, in both liquid and air, at high resolution (particle precision), with varying speeds and for a range of particle sizes. Moreover, the underlying mechanism of the controlled particle transportation is studied in depth by combining experiments with numerical simulations. The results show that the adhesion and friction between the particle and the cilia are essential ingredients of the mechanism underlying the multidirectional transportation. This work offers an advanced solution to controllably transport particles along designated paths in any direction over a surface, which has potential applications in diverse fields including lab-on-a-chip devices, in vitro biomedical sciences, and self-cleaning and antifouling.</p
    corecore