58 research outputs found

    MS-DETR: Multispectral Pedestrian Detection Transformer with Loosely Coupled Fusion and Modality-Balanced Optimization

    Full text link
    Multispectral pedestrian detection is an important task for many around-the-clock applications, since the visible and thermal modalities can provide complementary information especially under low light conditions. Most of the available multispectral pedestrian detectors are based on non-end-to-end detectors, while in this paper, we propose MultiSpectral pedestrian DEtection TRansformer (MS-DETR), an end-to-end multispectral pedestrian detector, which extends DETR into the field of multi-modal detection. MS-DETR consists of two modality-specific backbones and Transformer encoders, followed by a multi-modal Transformer decoder, and the visible and thermal features are fused in the multi-modal Transformer decoder. To well resist the misalignment between multi-modal images, we design a loosely coupled fusion strategy by sparsely sampling some keypoints from multi-modal features independently and fusing them with adaptively learned attention weights. Moreover, based on the insight that not only different modalities, but also different pedestrian instances tend to have different confidence scores to final detection, we further propose an instance-aware modality-balanced optimization strategy, which preserves visible and thermal decoder branches and aligns their predicted slots through an instance-wise dynamic loss. Our end-to-end MS-DETR shows superior performance on the challenging KAIST, CVC-14 and LLVIP benchmark datasets. The source code is available at https://github.com/YinghuiXing/MS-DETR

    (E)-1-[4-(Dimethyl­amino)benzyl­idene]thio­semicarbazide

    Get PDF
    In the title mol­ecule, C10H14N4S, the thio­rea plane and benzene ring form a dihedral angle of 16.0 (3) Å. In the crystal structure, inter­molecular N—H⋯S hydrogen bonds link the mol­ecules into ribbons extended in the [100] direction; these incorporate inversion dimers

    Pre-train, Adapt and Detect: Multi-Task Adapter Tuning for Camouflaged Object Detection

    Full text link
    Camouflaged object detection (COD), aiming to segment camouflaged objects which exhibit similar patterns with the background, is a challenging task. Most existing works are dedicated to establishing specialized modules to identify camouflaged objects with complete and fine details, while the boundary can not be well located for the lack of object-related semantics. In this paper, we propose a novel ``pre-train, adapt and detect" paradigm to detect camouflaged objects. By introducing a large pre-trained model, abundant knowledge learned from massive multi-modal data can be directly transferred to COD. A lightweight parallel adapter is inserted to adjust the features suitable for the downstream COD task. Extensive experiments on four challenging benchmark datasets demonstrate that our method outperforms existing state-of-the-art COD models by large margins. Moreover, we design a multi-task learning scheme for tuning the adapter to exploit the shareable knowledge across different semantic classes. Comprehensive experimental results showed that the generalization ability of our model can be substantially improved with multi-task adapter initialization on source tasks and multi-task adaptation on target tasks

    Ground-to-Aerial Person Search: Benchmark Dataset and Approach

    Full text link
    In this work, we construct a large-scale dataset for Ground-to-Aerial Person Search, named G2APS, which contains 31,770 images of 260,559 annotated bounding boxes for 2,644 identities appearing in both of the UAVs and ground surveillance cameras. To our knowledge, this is the first dataset for cross-platform intelligent surveillance applications, where the UAVs could work as a powerful complement for the ground surveillance cameras. To more realistically simulate the actual cross-platform Ground-to-Aerial surveillance scenarios, the surveillance cameras are fixed about 2 meters above the ground, while the UAVs capture videos of persons at different location, with a variety of view-angles, flight attitudes and flight modes. Therefore, the dataset has the following unique characteristics: 1) drastic view-angle changes between query and gallery person images from cross-platform cameras; 2) diverse resolutions, poses and views of the person images under 9 rich real-world scenarios. On basis of the G2APS benchmark dataset, we demonstrate detailed analysis about current two-step and end-to-end person search methods, and further propose a simple yet effective knowledge distillation scheme on the head of the ReID network, which achieves state-of-the-art performances on both of the G2APS and the previous two public person search datasets, i.e., PRW and CUHK-SYSU. The dataset and source code available on \url{https://github.com/yqc123456/HKD_for_person_search}.Comment: Accepted by ACM MM 202

    Dual Modality Prompt Tuning for Vision-Language Pre-Trained Model

    Full text link
    With the emergence of large pre-trained vison-language model like CLIP, transferable representations can be adapted to a wide range of downstream tasks via prompt tuning. Prompt tuning tries to probe the beneficial information for downstream tasks from the general knowledge stored in the pre-trained model. A recently proposed method named Context Optimization (CoOp) introduces a set of learnable vectors as text prompt from the language side. However, tuning the text prompt alone can only adjust the synthesized "classifier", while the computed visual features of the image encoder can not be affected , thus leading to sub-optimal solutions. In this paper, we propose a novel Dual-modality Prompt Tuning (DPT) paradigm through learning text and visual prompts simultaneously. To make the final image feature concentrate more on the target visual concept, a Class-Aware Visual Prompt Tuning (CAVPT) scheme is further proposed in our DPT, where the class-aware visual prompt is generated dynamically by performing the cross attention between text prompts features and image patch token embeddings to encode both the downstream task-related information and visual instance information. Extensive experimental results on 11 datasets demonstrate the effectiveness and generalization ability of the proposed method. Our code is available in https://github.com/fanrena/DPT.Comment: 12 pages, 7 figure

    SaliencyGAN: Deep Learning Semisupervised Salient Object Detection in the Fog of IoT

    Get PDF
    In modern Internet of Things (IoT), visual analysis and predictions are often performed by deep learning models. Salient object detection (SOD) is a fundamental preprocessing for these applications. Executing SOD on the fog devices is a challenging task due to the diversity of data and fog devices. To adopt convolutional neural networks (CNN) on fog-cloud infrastructures for SOD-based applications, we introduce a semisupervised adversarial learning method in this article. The proposed model, named as SaliencyGAN, is empowered by a novel concatenated generative adversarial network (GAN) framework with partially shared parameters. The backbone CNN can be chosen flexibly based on the specific devices and applications. In the meanwhile, our method uses both the labeled and unlabeled data from different problem domains for training. Using multiple popular benchmark datasets, we compared state-of-the-art baseline methods to our SaliencyGAN obtained with 10-100% labeled training data. SaliencyGAN gained performance comparable to the supervised baselines when the percentage of labeled data reached 30%, and outperformed the weakly supervised and unsupervised baselines. Furthermore, our ablation study shows that SaliencyGAN were more robust to the common “mode missing” (or “mode collapse”) issue compared to the selected popular GAN models. The visualized ablation results have proved that SaliencyGAN learned a better estimation of data distributions. To the best of our knowledge, this is the first IoT-oriented semisupervised SOD method

    Efficient Bilateral Cross-Modality Cluster Matching for Unsupervised Visible-Infrared Person ReID

    Full text link
    Unsupervised visible-infrared person re-identification (USL-VI-ReID) aims to match pedestrian images of the same identity from different modalities without annotations. Existing works mainly focus on alleviating the modality gap by aligning instance-level features of the unlabeled samples. However, the relationships between cross-modality clusters are not well explored. To this end, we propose a novel bilateral cluster matching-based learning framework to reduce the modality gap by matching cross-modality clusters. Specifically, we design a Many-to-many Bilateral Cross-Modality Cluster Matching (MBCCM) algorithm through optimizing the maximum matching problem in a bipartite graph. Then, the matched pairwise clusters utilize shared visible and infrared pseudo-labels during the model training. Under such a supervisory signal, a Modality-Specific and Modality-Agnostic (MSMA) contrastive learning framework is proposed to align features jointly at a cluster-level. Meanwhile, the cross-modality Consistency Constraint (CC) is proposed to explicitly reduce the large modality discrepancy. Extensive experiments on the public SYSU-MM01 and RegDB datasets demonstrate the effectiveness of the proposed method, surpassing state-of-the-art approaches by a large margin of 8.76% mAP on average

    Text-based Person Search in Full Images via Semantic-Driven Proposal Generation

    Full text link
    Finding target persons in full scene images with a query of text description has important practical applications in intelligent video surveillance.However, different from the real-world scenarios where the bounding boxes are not available, existing text-based person retrieval methods mainly focus on the cross modal matching between the query text descriptions and the gallery of cropped pedestrian images. To close the gap, we study the problem of text-based person search in full images by proposing a new end-to-end learning framework which jointly optimize the pedestrian detection, identification and visual-semantic feature embedding tasks. To take full advantage of the query text, the semantic features are leveraged to instruct the Region Proposal Network to pay more attention to the text-described proposals. Besides, a cross-scale visual-semantic embedding mechanism is utilized to improve the performance. To validate the proposed method, we collect and annotate two large-scale benchmark datasets based on the widely adopted image-based person search datasets CUHK-SYSU and PRW. Comprehensive experiments are conducted on the two datasets and compared with the baseline methods, our method achieves the state-of-the-art performance

    1-Hexadecyl-3-methyl­imidazolium bromide monohydrate

    Get PDF
    In the crystal structure of the title compound, C20H39N2 +·Br−·H2O, the 1-hexa­decyl-3-methyl­imidazolium cations are stacked along the b axis, forming channels parallel to [100] which are occupied by the bromide anions and water mol­ecules. The crystal is stabilized by O—H⋯Br, C—H⋯O and C—H⋯Br hydrogen-bonding inter­actions, generating a two-dimensional network
    corecore