252 research outputs found

    Multi-microjoule GaSe-based mid-infrared optical parametric amplifier with an ultra-broad idler spectrum covering 4.2-16 {\mu}m

    Full text link
    We report a multi-microjoule, ultra-broadband mid-infrared optical parametric amplifier based on a GaSe nonlinear crystal pumped at ~2 {\mu}m. The generated idler pulse has a flat spectrum spanning from 4.5 to 13.3 {\mu}m at -3 dB and 4.2 to 16 {\mu}m in the full spectral range, with a central wavelength of 8.8 {\mu}m. The proposed scheme supports a sub-cycle Fourier-transform-limited pulse width. A (2+1)-dimensional numerical simulation is employed to reproduce the obtained idler spectrum. To our best knowledge, this is the broadest -3 dB spectrum ever obtained by optical parametric amplifiers in this spectral region. The idler pulse energy is ~3.4 {\mu}J with a conversion efficiency of ~2% from the ~2 {\mu}m pump to the idler pulse.Comment: 5 pages, 5 figure

    Targeting oncogenic SOX2 in human cancer cells: therapeutic application

    Full text link
    https://deepblue.lib.umich.edu/bitstream/2027.42/152190/1/13238_2019_Article_673.pd

    Numerical Simulation of Parallel Cutting with Different Number of Empty Holes

    Get PDF
    The cutting blasting plays a key role in rock excavation construction, which determines the blasting effect and efficiency of the entire blasting project. In the cutting blasting, parallel holes are often used as the auxiliary free surface and the compensation space of blasting rock, and the empty holes have a great influence on the blasting effect. In this paper, Ansys/Ls-Dyna finite element analysis software is carried out to simulate four models with different number of empty holes. The simulation results show that the stronger the guiding effect of the empty holes on the crack propagation, the more obvious the inhibition effect on the crack in the remaining direction. The initial crack near the empty hole is generated by the continuous action of the stress wave, and the empty hole promotes the propagation of the explosion stress wave. The inconsistent guiding directions of adjacent empty holes are one of the reasons for the unsatisfactory blasting effect of multiple small diameter empty holes. The closer the empty hole is to the blasthole, the larger the maximum principal stress. By comparing the results of calculation with the numerical simulation, it is verified that the maximum principal stress near the empty hole is similar and the change rule is consistent. The above research has reference meaning to the location of the hollow hole in the actual blasting construction and the density of the empty hole
    corecore