503 research outputs found

    Second-Order Coding Rate of Quasi-Static Rayleigh-Product MIMO Channels

    Full text link
    With the development of innovative applications that require high reliability and low latency, ultra-reliable and low latency communications become critical for wireless networks. In this paper, the second-order coding rate of the coherent quasi-static Rayleigh-product MIMO channel is investigated. We consider the coding rate within O(1/\sqrt(Mn)) of the capacity, where M and n denote the number of transmit antennas and the blocklength, respectively, and derive the closed-form upper and lower bounds for the optimal average error probability. This analysis is achieved by setting up a central limit theorem (CLT) for the mutual information density (MID) with the assumption that the block-length, the number of the scatterers, and the number of the antennas go to infinity with the same pace. To obtain more physical insights, the high and low SNR approximations for the upper and lower bounds are also given. One interesting observation is that rank-deficiency degrades the performance of MIMO systems with FBL and the fundamental limits of the Rayleigh-product channel approaches those of the single Rayleigh case when the number of scatterers approaches infinity. Finally, the fitness of the CLT and the gap between the derived bounds and the performance of practical LDPC coding are illustrated by simulations

    ProbPS: A new model for peak selection based on quantifying the dependence of the existence of derivative peaks on primary ion intensity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The analysis of mass spectra suggests that the existence of derivative peaks is strongly dependent on the intensity of the primary peaks. Peak selection from tandem mass spectrum is used to filter out noise and contaminant peaks. It is widely accepted that a valid primary peak tends to have high intensity and is accompanied by derivative peaks, including isotopic peaks, neutral loss peaks, and complementary peaks. Existing models for peak selection ignore the dependence between the existence of the derivative peaks and the intensity of the primary peaks. Simple models for peak selection assume that these two attributes are independent; however, this assumption is contrary to real data and prone to error.</p> <p>Results</p> <p>In this paper, we present a statistical model to quantitatively measure the dependence of the derivative peak's existence on the primary peak's intensity. Here, we propose a statistical model, named ProbPS, to capture the dependence in a quantitative manner and describe a statistical model for peak selection. Our results show that the quantitative understanding can successfully guide the peak selection process. By comparing ProbPS with AuDeNS we demonstrate the advantages of our method in both filtering out noise peaks and in improving <it>de novo </it>identification. In addition, we present a tag identification approach based on our peak selection method. Our results, using a test data set, suggest that our tag identification method (876 correct tags in 1000 spectra) outperforms PepNovoTag (790 correct tags in 1000 spectra).</p> <p>Conclusions</p> <p>We have shown that ProbPS improves the accuracy of peak selection which further enhances the performance of de novo sequencing and tag identification. Thus, our model saves valuable computation time and improving the accuracy of the results.</p

    Logging practices in software engineering : A systematic mapping study

    Get PDF
    Background: Logging practices provide the ability to record valuable runtime information of software systems to support operations tasks such as service monitoring and troubleshooting. However, current logging practices face common challenges. On the one hand, although the importance of logging practices has been broadly recognized, most of them are still conducted in an arbitrary or ad-hoc manner, ending up with questionable or inadequate support to perform these tasks. On the other hand, considerable research effort has been carried out on logging practices, however, few of the proposed techniques or methods have been widely adopted in industry. Objective: This study aims to establish a comprehensive understanding of the research state of logging practices, with a focus on unveiling possible problems and gaps which further shed light on the potential future research directions. Method: We carried out a systematic mapping study on logging practices with 56 primary studies. Results: This study provides a holistic report of the existing research on logging practices by systematically synthesizing and analyzing the focus and inter-relationship of the existing research in terms of issues, research topics and solution approaches. Using 3W1H ā€” Why to log , Where to log , What to log and How well is the logging ā€”as the categorization standard, we find that: (1) the best known issues in logging practices have been repeatedly investigated; (2) the issues are often studied separately without considering their intricate relationships; (3) the Where and What questions have attracted the majority of research attention while little research effort has been made on the Why and How well questions; and (4) the relationships between issues, research topics, and approaches regarding logging practices appear many-to-many, which indicates a lack of profound understanding of the issues in practice and how they should be appropriately tackled. Conclusions: This study indicates a need to advance the state of research on logging practices. For example, more research effort should be invested on why to log to set the anchor of logging practices as well as on how well is the logging to close the loop. In addition, a holistic process perspective should be taken into account in both the research and the adoption related to logging practices

    High-dimensional Clustering onto Hamiltonian Cycle

    Full text link
    Clustering aims to group unlabelled samples based on their similarities. It has become a significant tool for the analysis of high-dimensional data. However, most of the clustering methods merely generate pseudo labels and thus are unable to simultaneously present the similarities between different clusters and outliers. This paper proposes a new framework called High-dimensional Clustering onto Hamiltonian Cycle (HCHC) to solve the above problems. First, HCHC combines global structure with local structure in one objective function for deep clustering, improving the labels as relative probabilities, to mine the similarities between different clusters while keeping the local structure in each cluster. Then, the anchors of different clusters are sorted on the optimal Hamiltonian cycle generated by the cluster similarities and mapped on the circumference of a circle. Finally, a sample with a higher probability of a cluster will be mapped closer to the corresponding anchor. In this way, our framework allows us to appreciate three aspects visually and simultaneously - clusters (formed by samples with high probabilities), cluster similarities (represented as circular distances), and outliers (recognized as dots far away from all clusters). The experiments illustrate the superiority of HCHC

    Message Passing Meets Graph Neural Networks: A New Paradigm for Massive MIMO Systems

    Full text link
    As one of the core technologies for 5G systems, massive multiple-input multiple-output (MIMO) introduces dramatic capacity improvements along with very high beamforming and spatial multiplexing gains. When developing efficient physical layer algorithms for massive MIMO systems, message passing is one promising candidate owing to the superior performance. However, as their computational complexity increases dramatically with the problem size, the state-of-the-art message passing algorithms cannot be directly applied to future 6G systems, where an exceedingly large number of antennas are expected to be deployed. To address this issue, we propose a model-driven deep learning (DL) framework, namely the AMP-GNN for massive MIMO transceiver design, by considering the low complexity of the AMP algorithm and adaptability of GNNs. Specifically, the structure of the AMP-GNN network is customized by unfolding the approximate message passing (AMP) algorithm and introducing a graph neural network (GNN) module into it. The permutation equivariance property of AMP-GNN is proved, which enables the AMP-GNN to learn more efficiently and to adapt to different numbers of users. We also reveal the underlying reason why GNNs improve the AMP algorithm from the perspective of expectation propagation, which motivates us to amalgamate various GNNs with different message passing algorithms. In the simulation, we take the massive MIMO detection to exemplify that the proposed AMP-GNN significantly improves the performance of the AMP detector, achieves comparable performance as the state-of-the-art DL-based MIMO detectors, and presents strong robustness to various mismatches.Comment: 30 Pages, 7 Figures, and 4 Tables. This paper has been submitted to the IEEE for possible publication. arXiv admin note: text overlap with arXiv:2205.1062
    • ā€¦
    corecore