110 research outputs found

    UniKG: A Benchmark and Universal Embedding for Large-Scale Knowledge Graphs

    Full text link
    Irregular data in real-world are usually organized as heterogeneous graphs (HGs) consisting of multiple types of nodes and edges. To explore useful knowledge from real-world data, both the large-scale encyclopedic HG datasets and corresponding effective learning methods are crucial, but haven't been well investigated. In this paper, we construct a large-scale HG benchmark dataset named UniKG from Wikidata to facilitate knowledge mining and heterogeneous graph representation learning. Overall, UniKG contains more than 77 million multi-attribute entities and 2000 diverse association types, which significantly surpasses the scale of existing HG datasets. To perform effective learning on the large-scale UniKG, two key measures are taken, including (i) the semantic alignment strategy for multi-attribute entities, which projects the feature description of multi-attribute nodes into a common embedding space to facilitate node aggregation in a large receptive field; (ii) proposing a novel plug-and-play anisotropy propagation module (APM) to learn effective multi-hop anisotropy propagation kernels, which extends methods of large-scale homogeneous graphs to heterogeneous graphs. These two strategies enable efficient information propagation among a tremendous number of multi-attribute entities and meantimes adaptively mine multi-attribute association through the multi-hop aggregation in large-scale HGs. We set up a node classification task on our UniKG dataset, and evaluate multiple baseline methods which are constructed by embedding our APM into large-scale homogenous graph learning methods. Our UniKG dataset and the baseline codes have been released at https://github.com/Yide-Qiu/UniKG.Comment: 9 pages, 4 figure

    A Novel Strategy for MALDI-TOF MS Analysis of Small Molecules

    Get PDF
    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) does not work efficiently on small molecules (usually with molecular weight below 500 Da) because of the interference of matrix-related peaks in low m/z region. The previous methods developed for this problem focused on reducing the peaks caused by the traditional matrices. Here, we report a novel strategy to analyze small molecules in a high and interference-free mass range by using metal-phthalocyanines (MPcs) as matrices which should be capable of forming matrix-analyte adducts. The mass of the target analyte was calculated by subtracting the mass of MPc from the mass of the MPc–analyte adduct. MPcs were also detectable and could serve as internal standards. Various MPcs with aromatic or aliphatic groups and different metal centers were then synthesized and explored. Aluminum-phthalocyanines (AlPcs), gallium-phthalocyanines (GaPcs), and indium-phthalocyanines (InPcs) were efficient matrices to form MPc–analyte adducts in either the positive or negative ion mode. The detection limits varied from 17 to 75 fmol, depending on analyte types. The mechanism of adducts formation was also proposed. Collectively, our strategy provides a novel and efficient way to analyze small molecules by MALDI-TOF MS

    Doping inorganic ions to regulate bioactivity of Ca–P coating on bioabsorbable high purity magnesium

    Get PDF
    AbstractPerformance of biomaterials was strongly affected by their surface properties and could be designed artificially to meet specific biomedical requirements. In this study, F−(F), SiO42−(Si), or HCO3−(C)-doped Ca–P coatings were fabricated by biomimetic deposition on the surface of biodegradable high-purity magnesium (HP Mg). The crystalline phases, morphologies and compositions of Ca–P coatings had been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). The biomineralization and corrosion resistance of doped Ca–P coatings had also been investigated. The results showed that the Ca–P coating with or without doped elements mainly contained the plate-like dicalcium phosphate dehydrate (DCPD) phase. The doped F, Si, or C changed the surface morphology of Ca–P coatings after mineralization. Doped F enhanced the mineralization of Ca–P coating, and doped Si retarded the mineralization of Ca–P coating. However, H2 evolution of HP Mg discs with different Ca–P coatings was close to 0.4–0.7ml/cm2 after two-week immersion. That meant that the corrosion resistance of the Ca–P coatings with different or without doped elements did not change significantly

    Three-Dimensional Reconstruction of Thoracic Structures: Based on Chinese Visible Human

    Get PDF
    We managed to establish three-dimensional digitized visible model of human thoracic structures and to provide morphological data for imaging diagnosis and thoracic and cardiovascular surgery. With Photoshop software, the contour line of lungs and mediastinal structures including heart, aorta and its ramus, azygos vein, superior vena cava, inferior vena cava, thymus, esophagus, diaphragm, phrenic nerve, vagus nerve, sympathetic trunk, thoracic vertebrae, sternum, thoracic duct, and so forth were segmented from the Chinese Visible Human (CVH)-1 data set. The contour data set of segmented thoracic structures was imported to Amira software and 3D thorax models were reconstructed via surface rendering and volume rendering. With Amira software, surface rendering reconstructed model of thoracic organs and its volume rendering reconstructed model were 3D reconstructed and can be displayed together clearly and accurately. It provides a learning tool of interpreting human thoracic anatomy and virtual thoracic and cardiovascular surgery for medical students and junior surgeons
    • …
    corecore