34 research outputs found

    Silk-Derived Graphene-Like Carbon with High Electrocatalytic Activity for Oxygen Reduction Reaction

    Get PDF
    A facile method to prepare the nanoporous and graphene-like carbon material from a natural silk fiber was developed by a potassium intercalation and carbonization procedure. The as-synthesized graphene-like fiber was employed for oxygen reduction reaction and exhibited impressive electrocatalytic activity

    Repetitive Element-Mediated Recombination as a Mechanism for New Gene Origination in Drosophila

    Get PDF
    Previous studies of repetitive elements (REs) have implicated a mechanistic role in generating new chimerical genes. Such examples are consistent with the classic model for exon shuffling, which relies on non-homologous recombination. However, recent data for chromosomal aberrations in model organisms suggest that ectopic homology-dependent recombination may also be important. Lack of a dataset comprising experimentally verified young duplicates has hampered an effective examination of these models as well as an investigation of sequence features that mediate the rearrangements. Here we use ∼7,000 cDNA probes (∼112,000 primary images) to screen eight species within the Drosophila melanogaster subgroup and identify 17 duplicates that were generated through ectopic recombination within the last 12 mys. Most of these are functional and have evolved divergent expression patterns and novel chimeric structures. Examination of their flanking sequences revealed an excess of repetitive sequences, with the majority belonging to the transposable element DNAREP1 family, associated with the new genes. Our dataset strongly suggests an important role for REs in the generation of chimeric genes within these species

    Outbred genome sequencing and CRISPR/Cas9 gene editing in butterflies

    Get PDF
    Butterflies are exceptionally diverse but their potential as an experimental system has been limited by the difficulty of deciphering heterozygous genomes and a lack of genetic manipulation technology. Here we use a hybrid assembly approach to construct high-quality reference genomes for Papilio xuthus (contig and scaffold N50: 492 kb, 3.4 Mb) and Papilio machaon (contig and scaffold N50: 81 kb, 1.15 Mb), highly heterozygous species that differ in host plant affiliations, and adult and larval colour patterns. Integrating comparative genomics and analyses of gene expression yields multiple insights into butterfly evolution, including potential roles of specific genes in recent diversification. To functionally test gene function, we develop an efficient (up to 92.5%) CRISPR/Cas9 gene editing method that yields obvious phenotypes with three genes, Abdominal-B, ebony and frizzled. Our results provide valuable genomic and technological resources for butterflies and unlock their potential as a genetic model system

    A Young Drosophila Duplicate Gene Plays Essential Roles in Spermatogenesis by Regulating Several Y-Linked Male Fertility Genes

    Get PDF
    Gene duplication is supposed to be the major source for genetic innovations. However, how a new duplicate gene acquires functions by integrating into a pathway and results in adaptively important phenotypes has remained largely unknown. Here, we investigated the biological roles and the underlying molecular mechanism of the young kep1 gene family in the Drosophila melanogaster species subgroup to understand the origin and evolution of new genes with new functions. Sequence and expression analysis demonstrates that one of the new duplicates, nsr (novel spermatogenesis regulator), exhibits positive selection signals and novel subcellular localization pattern. Targeted mutagenesis and whole-transcriptome sequencing analysis provide evidence that nsr is required for male reproduction associated with sperm individualization, coiling, and structural integrity of the sperm axoneme via regulation of several Y chromosome fertility genes post-transcriptionally. The absence of nsr-like expression pattern and the presence of the corresponding cis-regulatory elements of the parental gene kep1 in the pre-duplication species Drosophila yakuba indicate that kep1 might not be ancestrally required for male functions and that nsr possibly has experienced the neofunctionalization process, facilitated by changes of trans-regulatory repertories. These findings not only present a comprehensive picture about the evolution of a new duplicate gene but also show that recently originated duplicate genes can acquire multiple biological roles and establish novel functional pathways by regulating essential genes

    Venom gland transcriptomes of two elapid snakes (Bungarus multicinctus and Naja atra) and evolution of toxin genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Kraits (genus <it>Bungarus</it>) and cobras (genus <it>Naja</it>) are two representative toxic genera of elapids in the old world. Although they are closely related genera and both of their venoms are very toxic, the compositions of their venoms are very different. To unveil their detailed venoms and their evolutionary patterns, we constructed venom gland cDNA libraries and genomic bacterial artificial chromosome (BAC) libraries for <it>Bungarus multicinctus </it>and <it>Naja atra</it>, respectively. We sequenced about 1500 cDNA clones for each of the venom cDNA libraries and screened BAC libraries of the two snakes by blot analysis using four kinds of toxin probes; <it>i.e</it>., three-finger toxin (3FTx), phospholipase A2 (PLA2), kunitz-type protease inhibitor (Kunitz), and natriuretic peptide (NP).</p> <p>Results</p> <p>In total, 1092 valid expressed sequences tags (ESTs) for <it>B. multicinctus </it>and 1166 ESTs for <it>N. atra </it>were generated. About 70% of these ESTs can be annotated as snake toxin transcripts. 3FTx (64.5%) and <it>β </it>bungarotoxin (25.1%) comprise the main toxin classes in <it>B. multicinctus</it>, while 3FTx (95.8%) is the dominant toxin in <it>N. atra</it>. We also observed several less abundant venom families in <it>B. multicinctus </it>and <it>N. atra</it>, such as PLA2, C-type lectins, and Kunitz. Peculiarly a cluster of NP precursors with tandem NPs was detected in <it>B. multicinctus</it>. A total of 71 positive toxin BAC clones in <it>B. multicinctus </it>and <it>N. atra </it>were identified using four kinds of toxin probes (3FTx, PLA2, Kunitz, and NP), among which 39 3FTx-postive BACs were sequenced to reveal gene structures of 3FTx toxin genes.</p> <p>Conclusions</p> <p>Based on the toxin ESTs and 3FTx gene sequences, the major components of <it>B. multicinctus </it>venom transcriptome are neurotoxins, including long chain alpha neurotoxins (<it>α</it>-ntx) and the recently originated <it>β </it>bungarotoxin, whereas the <it>N. atra </it>venom transcriptome mainly contains 3FTxs with cytotoxicity and neurotoxicity (short chain <it>α</it>-ntx). The data also revealed that tandem duplications contributed the most to the expansion of toxin multigene families. Analysis of nonsynonymous to synonymous nucleotide substitution rate ratios (<it>dN</it>/<it>dS</it>) indicates that not only multigene toxin families but also other less abundant toxins might have been under rapid diversifying evolution.</p

    Geometric Construction of Video Stereo Grid Space

    No full text
    The construction of digital twin cities is a current research hotspot. Video data are one of the important aspects of digital twin cities, and their digital modeling is one of the important foundations of its construction. For this reason, the construction and digital analysis of video data space has become an urgent problem to be solved. After in-depth research, this study found that the existing video space construction methods have three shortcomings: first, the problem of high requirements for objective conditions or low accuracy; second, the lack of easy and efficient mapping algorithms from 2D video pixel coordinates to 3D; and third, the lack of efficient correlation mechanisms between video space and external geographic information, making it difficult to integrate video space with external information, and thus prevent a more effective analysis. In view of the above problems, this paper proposes a video stereo grid geometric space construction method based on GeoSOT-3D stereo grid coding and a camera imaging model to form a video stereo grid space model. Finally, targeted experiments of video stereo grid space geometry construction were conducted to analyze the experimental results before and after optimization and compare the variance size to verify the feasibility and effectiveness of the model

    A Research on the mixed active teaching method of curriculum in colleges and universities

    No full text
    Emergencies have brought uncertain factors to the offline curriculum teaching in colleges and universities, which has put forward higher requirements for the quality of curriculum teaching in colleges and universities. The reasonable design of normalized emergency response plan to solve the above problems has become the focus of current teaching research. In view of the problems existing in the current education and teaching, and considering the needs of talent training in colleges and universities and the needs of social practical talents, this paper proposes a hybrid active teaching mode curriculum teaching method. The purpose of this paper is to provide a certain method support for the construction of higher education and teaching theory system

    Vehicle Seat Structure Optimization in Front and Rear Impact

    No full text

    Dual‐Triggered Near‐Infrared Persistent Luminescence Nanoprobe for Autofluorescence‐Free Imaging‐Guided Precise Therapy of Rheumatoid Arthritis

    No full text
    Abstract Rheumatoid arthritis (RA) is a common, chronic, and highly disabling autoimmune disease characterized by difficult treatment, long disease duration, and easy recurrence. The development and application of high‐sensitivity theranostic probes for RA that will facilitate precise monitoring of disease progression and enable effective treatment are currently hotspots in the field of RA theranostics. In this study, mZMI@HA, a dual‐triggered theranostics nanoprobe, is constructed based on near‐infrared persistent luminescence nanoparticles (NIR‐PLNPs) for precise RA treatment and therapeutic evaluation. This is the first reported use of high‐sensitivity autofluorescence‐free imaging based on NIR‐PLNPs for precise RA treatment and therapeutic evaluation. Compared with the NIR fluorescence imaging probe‐indocyanine green, the signal‐to‐background ratio of persistent luminescence (PersL) imaging is improved nearly 14‐fold. Using PersL imaging to guide photothermal therapy and controllable drug release through NIR/pH‐responsiveness, the progress of collagen‐induced RA is relieved. Additionally, the therapeutic evaluation of RA by PersL imaging is consistent with clinical micro‐computed tomography and histological analyses. This study demonstrates the potential of NIR‐PLNPs for high‐sensitivity imaging‐guided RA treatment, providing a new strategy for RA precise theranostics
    corecore