6,621 research outputs found

    Skyrmion dynamics in a chiral magnet driven by periodically varying spin currents

    Full text link
    In this work, we investigated the spin dynamics in a slab of chiral magnets induced by an alternating (ac) spin current. Periodic trajectories of the skyrmion in real space are discovered under the ac current as a result of the Magnus and viscous forces, which originate from the Gilbert damping, the spin transfer torque, and the β \beta -nonadiabatic torque effects. The results are obtained by numerically solving the Landau-Lifshitz-Gilbert equation and can be explained by the Thiele equation characterizing the skyrmion core motion

    Central Limit Theorems for Supercritical Superprocesses

    Full text link
    In this paper, we establish a central limit theorem for a large class of general supercritical superprocesses with spatially dependent branching mechanisms satisfying a second moment condition. This central limit theorem generalizes and unifies all the central limit theorems obtained recently in Mi{\l}o\'{s} (2012, arXiv:1203:6661) and Ren, Song and Zhang (2013, to appear in Acta Appl. Math., DOI 10.1007/s10440-013-9837-0) for supercritical super Ornstein-Uhlenbeck processes. The advantage of this central limit theorem is that it allows us to characterize the limit Gaussian field. In the case of supercritical super Ornstein-Uhlenbeck processes with non-spatially dependent branching mechanisms, our central limit theorem reveals more independent structures of the limit Gaussian field

    Central Limit Theorems for Super-OU Processes

    Full text link
    In this paper we study supercritical super-OU processes with general branching mechanisms satisfying a second moment condition. We establish central limit theorems for the super-OU processes. In the small and crtical branching rate cases, our central limit theorems sharpen the corresponding results in the recent preprint of Milos in that the limit normal random variables in our central limit theorems are non-degenerate. Our central limit theorems in the large branching rate case are completely new. The main tool of the paper is the so called "backbone decomposition" of superprocesses
    • …
    corecore