19 research outputs found

    A Novel Method for the Fault Diagnosis of a Planetary Gearbox based on Residual Sidebands from Modulation Signal Bispectrum Analysis

    Get PDF
    This paper presents a novel method for the fault diagnosis of planetary gearboxes based on an accurate estimation of residual sidebands using a modulation signal bispectrum (MSB). The residual sideband resulting from the out-phase superposition of vibration waves from asymmetrical multiple meshing sources are much less influenced by gear errors than that of the in-phase sidebands. Therefore, with the accurate estimation by MSB they can produce accurate and consistent diagnosis, which are evaluated by both simulating and experimental studies. However, the commonly used in-phase sidebands have high amplitudes but include gear error effects, consequently leading to poor diagnostic results

    A joint optimal model of pricing, rebate value, and redemption hassle

    No full text
    Although rebates are widely employed, redemption is not effort free, and the hassle of redemption is an important decision variable for buyers. The current research examines the impact of hassle cost on optimal rebate strategy. An analytical model is developed that simultaneously determines the supply chain's optimal price, level of rebate value, and rebate-redemption hassle, while allowing for slippage (as consumers may forget to redeem a rebate), in both a centralized and decentralized supply chain. Results show that the level of rebate-redemption hassle plays a key role in segmenting the market into rebate and nonrebate purchasers. Although in a centralized supply chain redemption hassle should increase in a convex manner with valuations, no such restrictions exist in a decentralized supply chain. This difference is due to double marginalization, which results in higher retail prices in the decentralized supply chain. Rebates can be used to reduce this double marginalization. Furthermore, a manufacturer in a decentralized supply should offer a more attractive rebate than in a centralized supply chain. We also find that changes in the supply chain's optimal price and rebate strategy are nonlinear and nonmonotonic in both production cost and elasticity for consumers’ disutility for hassle. Finally, findings are all supported by results from numerical analyses. Overall, our work contributes theoretically and managerially to the study of rebates by jointly considering price, rebate value, and redemption hassle

    PNGSeqR: An R Package for Rapid Candidate Gene Selection through Pooled Next-Generation Sequencing

    No full text
    Although bulked segregant analysis (BSA) has been used extensively in genetic mapping, user-friendly tools which can integrate current algorithms for researchers with no background in bioinformatics are scarce. To address this issue, we developed an R package, PNGSeqR, which takes single-nucleotide polymorphism (SNP) markers from next-generation sequencing (NGS) data in variant call format (VCF) as the input file, provides four BSA algorithms to indicate the magnitude of genome-wide signals, and rapidly defines the candidate region through the permutation test and fractile quantile. Users can choose the analysis methods according to their data and experimental design. In addition, it also supports differential expression gene analysis (DEG) and gene ontology analysis (GO) to prioritize the target gene. Once the analysis is completed, the plots can conveniently be exported

    Cloning of a new allele of ZmAMP1 and evaluation of its breeding value in hybrid maize

    No full text
    Gene resources associated with plant stature and flowering time are invaluable for maize breeding. In this study, using an F2:3 population derived from a natural semi-dwarf mutant grmm and a normal inbred line Si 273, we identified a major pleiotropic QTL on the distal long arm of chromosome 1 (qPH1_dla), and found that qPH1_dla controlled plant height, flowering time, ear and yield traits. qPH1_dla was fine-mapped to a 16 kb interval containing ZmAMP1, which was annotated as a glutamate carboxypeptidase. Allelism tests using two independent allelic mutants confirmed that ZmAMP1 was the causal gene. Real-time quantitative PCR and genomic sequence analysis suggested that a nonsynonymous mutation at the 598th base of ZmAMP1 gene was the causal sequence variant for the dwarfism of grmm. This novel ZmAMP1 allele was named ZmAMP1_grmm. RNA sequencing using two pairs of near isogenic lines (NILs) showed that 84 up-regulated and 68 down-regulated genes in dwarf NILs were enriched in 15 metabolic pathways. Finally, introgression of ZmAMP1_grmm into Zhengdan 958 and Xianyu 335 generated two improved F1 lines. In field tests, they were semi-dwarf, early-flowering, lodging-resistant, and high-yielding under high-density planting conditions, suggesting that ZmAMP1_grmm is a promising Green Revolution gene for maize hybrid breeding

    Dissection of the Genetic Basis of Yield Traits in Line per se and Testcross Populations and Identification of Candidate Genes for Hybrid Performance in Maize

    No full text
    Dissecting the genetic basis of yield traits in hybrid populations and identifying the candidate genes are important for molecular crop breeding. In this study, a BC1F3:4 population, the line per se (LPS) population, was constructed by using elite inbred lines Zheng58 and PH4CV as the parental lines. The population was genotyped with 55,000 SNPs and testcrossed to Chang7-2 and PH6WC (two testers) to construct two testcross (TC) populations. The three populations were evaluated for hundred kernel weight (HKW) and yield per plant (YPP) in multiple environments. Marker–trait association analysis (MTA) identified 24 to 151 significant SNPs in the three populations. Comparison of the significant SNPs identified common and specific quantitative trait locus/loci (QTL) in the LPS and TC populations. Genetic feature analysis of these significant SNPs proved that these SNPs were associated with the tested traits and could be used to predict trait performance of both LPS and TC populations. RNA-seq analysis was performed using maize hybrid varieties and their parental lines, and differentially expressed genes (DEGs) between hybrid varieties and parental lines were identified. Comparison of the chromosome positions of DEGs with those of significant SNPs detected in the TC population identified potential candidate genes that might be related to hybrid performance. Combining RNA-seq analysis and MTA results identified candidate genes for hybrid performance, providing information that could be useful for maize hybrid breeding

    Dek504 Encodes a Mitochondrion-Targeted E+-Type Pentatricopeptide Repeat Protein Essential for RNA Editing and Seed Development in Maize

    No full text
    In flowering plants, RNA editing is a post-transcriptional process that selectively deaminates cytidines (C) to uridines (U) in organellar transcripts. Pentatricopeptide repeat (PPR) proteins have been identified as site-specific recognition factors for RNA editing. Here, we report the map-based cloning and molecular characterization of the defective kernel mutant dek504 in maize. Loss of Dek504 function leads to delayed embryogenesis and endosperm development, which produce small and collapsed kernels. Dek504 encodes an E+-type PPR protein targeted to the mitochondria, which is required for RNA editing of mitochondrial NADH dehydrogenase 3 at the nad3-317 and nad3-44 sites. Biochemical analysis of mitochondrial protein complexes revealed a significant reduction in the mitochondrial NADH dehydrogenase complex I activity, indicating that the alteration of the amino acid sequence at nad3-44 and nad3-317 through RNA editing is essential for NAD3 function. Moreover, the amino acids are highly conserved in monocots and eudicots, whereas the events of C-to-U editing are not conserved in flowering plants. Thus, our results indicate that Dek504 is essential for RNA editing of nad3, which is critical for NAD3 function, mitochondrial complex I stability, and seed development in maize

    Transcriptome Analysis Identifies Novel Genes Associated with Low-Temperature Seed Germination in Sweet Corn

    No full text
    Typically, sweet corn, particularly sh2 sweet corn, has low seed vigor owing to its high sugar and low starch content, which is a major problem in sweet corn production, particularly at low temperatures. There is considerable variation in the germination rates among sweet corn varieties under low-temperature conditions, and the underlying mechanisms behind this phenomenon remain unclear. In this study, we screened two inbred sweet corn lines (tolerant line L282 and sensitive line L693) differing in their low-temperature germination rates; while no difference was observed in their germination rates at normal temperatures. To identify the specifically induced genes influencing the germination capacity of sweet corn at low temperatures, a transcriptome analysis of the two lines was conducted at both normal and low temperatures. Compared to the lines at a normal temperature, 3926 and 1404 differently expressed genes (DEGs) were identified from L282 and L693, respectively, under low-temperature conditions. Of them, 830 DEGs were common DEGs (cDEGs) that were identified from both L282 and L693, which were majorly enriched in terms of microtubule-based processes, histone H3-K9 modification, single-organism cellular processes, and carbohydrate metabolic processes. In addition, 3096 special DEGs (sDEGs), with 2199 upregulated and 897 downregulated, were detected in the tolerant line L282, but not in the sensitive line L693. These sDEGs were primarily related to plasma membranes and oxygen-containing compounds. Furthermore, electric conductivity measurements demonstrated that the membrane of L282 experienced less damage, which is consistent with its strong tolerance at low temperatures. These results expand our understanding of the complex mechanisms involved in the cold germination of sweet corn and provide a set of candidate genes for further genetic analysis
    corecore