21,959 research outputs found
Real-time motion data annotation via action string
Even though there is an explosive growth of motion capture data, there is still a lack of efficient and reliable methods to automatically annotate all the motions in a database. Moreover, because of the popularity of mocap devices in home entertainment systems, real-time human motion annotation or recognition becomes more and more imperative. This paper presents a new motion annotation method that achieves both the aforementioned two targets at the same time. It uses a probabilistic pose feature based on the Gaussian Mixture Model to represent each pose. After training a clustered pose feature model, a motion clip could be represented as an action string. Then, a dynamic programming-based string matching method is introduced to compare the differences between action strings. Finally, in order to achieve the real-time target, we construct a hierarchical action string structure to quickly label each given action string. The experimental results demonstrate the efficacy and efficiency of our method
Generating EPR beams in a cavity optomechanical system
We propose a scheme to produce continuous variable entanglement between
phase-quadrature amplitudes of two light modes in an optomechanical system. For
proper driving power and detuning, the entanglement is insensitive with bath
temperature and of mechanical oscillator. Under realistic experimental
conditions, we find that the entanglement could be very large even at room
temperature.Comment: 4.1 pages, 4 figures, comments are welcome; to appear in PRA,
published version with corrections of typo
Turbulence control by developing a spiral wave with a periodic signal injection in the complex Ginzburg-Landau equation
Turbulence control in the two-dimensional complex Ginzburg-Landau equation is
investigated. A new approach is proposed for the control purpose. In the
presence of a small spiral wave seed initiation, a fully developed turbulence
can be completely annihilated by injecting a single periodic signal to a small
fixed space area around the spiral wave tip. The control is achieved in a
parameter region where the spiral wave of the uncontrolled system is absolutely
unstable. The robustness, convenience and high control efficiency of this
method is emphasized, and the mechanism underlying these practical advantages
are intuitively understood.Comment: 12 pages, figures can be found in the following journa
Doublet bands in Cs in the triaxial rotor model coupled with two quasiparticles
The positive parity doublet bands based on the configuration in Cs have been investigated in the two
quasi-particles coupled with a triaxial rotor model. The energy spectra ,
energy staggering parameter , and
values, intraband ratios,
ratios, and orientation of the
angular momentum for the rotor as well as the valence proton and neutron are
calculated. After including the pairing correlation, good agreement has been
obtained between the calculated results and the data available, which supports
the interpretation of this positive parity doublet bands as chiral bands.Comment: Phys.Rev.C (accepted
Energy cycle and bound of Qi chaotic system
© 2017 The Qi chaotic system is transformed into a Kolmogorov-type system, thereby facilitating the analysis of energy exchange in its different forms. Regarding four forms of energy, the vector field of this chaotic system is decomposed into four forms of torque: inertial, internal, dissipative, and external. The rate of change of the Casimir function is equal to the exchange power between the dissipative energy and the supplied energy. The exchange power governs the orbital behavior and the cycling of energy. With the rate of change of Casimir function, a general bound and least upper bound of the Qi chaotic attractor are proposed. A detailed analysis with illustrations is conducted to uncover insights, in particular, cycling among the different types of energy for this chaotic attractor and key factors producing the different types of dynamic modes
Chiral bands for quasi-proton and quasi-neutron coupling with a triaxial rotor
A particle rotor model (PRM) with a quasi-proton and a quasi-neutron coupled
with a triaxial rotor is developed and applied to study chiral doublet bands
with configurations of a proton and a quasi-neutron. With
pairing treated by the BCS approximation, the present quasi-particle PRM is
aimed at simulating one proton and many neutron holes coupled with a triaxial
rotor. After a detailed analysis of the angular momentum orientations, energy
separation between the partner bands, and behavior of electromagnetic
transitions, for the first time we find aplanar rotation or equivalently chiral
geometry beyond the usual one proton and one neutron hole coupled with a
triaxial rotor.Comment: 25 pages, 10 figures, accepted for publication in Physical Review
- …