21,959 research outputs found

    Real-time motion data annotation via action string

    Get PDF
    Even though there is an explosive growth of motion capture data, there is still a lack of efficient and reliable methods to automatically annotate all the motions in a database. Moreover, because of the popularity of mocap devices in home entertainment systems, real-time human motion annotation or recognition becomes more and more imperative. This paper presents a new motion annotation method that achieves both the aforementioned two targets at the same time. It uses a probabilistic pose feature based on the Gaussian Mixture Model to represent each pose. After training a clustered pose feature model, a motion clip could be represented as an action string. Then, a dynamic programming-based string matching method is introduced to compare the differences between action strings. Finally, in order to achieve the real-time target, we construct a hierarchical action string structure to quickly label each given action string. The experimental results demonstrate the efficacy and efficiency of our method

    Generating EPR beams in a cavity optomechanical system

    Full text link
    We propose a scheme to produce continuous variable entanglement between phase-quadrature amplitudes of two light modes in an optomechanical system. For proper driving power and detuning, the entanglement is insensitive with bath temperature and QQ of mechanical oscillator. Under realistic experimental conditions, we find that the entanglement could be very large even at room temperature.Comment: 4.1 pages, 4 figures, comments are welcome; to appear in PRA, published version with corrections of typo

    Turbulence control by developing a spiral wave with a periodic signal injection in the complex Ginzburg-Landau equation

    Full text link
    Turbulence control in the two-dimensional complex Ginzburg-Landau equation is investigated. A new approach is proposed for the control purpose. In the presence of a small spiral wave seed initiation, a fully developed turbulence can be completely annihilated by injecting a single periodic signal to a small fixed space area around the spiral wave tip. The control is achieved in a parameter region where the spiral wave of the uncontrolled system is absolutely unstable. The robustness, convenience and high control efficiency of this method is emphasized, and the mechanism underlying these practical advantages are intuitively understood.Comment: 12 pages, figures can be found in the following journa

    Doublet bands in 126^{126}Cs in the triaxial rotor model coupled with two quasiparticles

    Get PDF
    The positive parity doublet bands based on the πh11/2νh11/2\pi h_{11/2}\otimes\nu h_{11/2} configuration in 126^{126}Cs have been investigated in the two quasi-particles coupled with a triaxial rotor model. The energy spectra E(I)E(I), energy staggering parameter S(I)=[E(I)E(I1)]/2IS(I)=[E(I)-E(I-1)]/2I, B(M1)B(M1) and B(E2)B(E2) values, intraband B(M1)/B(E2)B(M1)/B(E2) ratios, B(M1)in/B(M1)outB(M1)_{\textrm{in}}/B(M1)_{\textrm{out}} ratios, and orientation of the angular momentum for the rotor as well as the valence proton and neutron are calculated. After including the pairing correlation, good agreement has been obtained between the calculated results and the data available, which supports the interpretation of this positive parity doublet bands as chiral bands.Comment: Phys.Rev.C (accepted

    Energy cycle and bound of Qi chaotic system

    Full text link
    © 2017 The Qi chaotic system is transformed into a Kolmogorov-type system, thereby facilitating the analysis of energy exchange in its different forms. Regarding four forms of energy, the vector field of this chaotic system is decomposed into four forms of torque: inertial, internal, dissipative, and external. The rate of change of the Casimir function is equal to the exchange power between the dissipative energy and the supplied energy. The exchange power governs the orbital behavior and the cycling of energy. With the rate of change of Casimir function, a general bound and least upper bound of the Qi chaotic attractor are proposed. A detailed analysis with illustrations is conducted to uncover insights, in particular, cycling among the different types of energy for this chaotic attractor and key factors producing the different types of dynamic modes

    Chiral bands for quasi-proton and quasi-neutron coupling with a triaxial rotor

    Get PDF
    A particle rotor model (PRM) with a quasi-proton and a quasi-neutron coupled with a triaxial rotor is developed and applied to study chiral doublet bands with configurations of a h11/2h_{11/2} proton and a h11/2h_{11/2} quasi-neutron. With pairing treated by the BCS approximation, the present quasi-particle PRM is aimed at simulating one proton and many neutron holes coupled with a triaxial rotor. After a detailed analysis of the angular momentum orientations, energy separation between the partner bands, and behavior of electromagnetic transitions, for the first time we find aplanar rotation or equivalently chiral geometry beyond the usual one proton and one neutron hole coupled with a triaxial rotor.Comment: 25 pages, 10 figures, accepted for publication in Physical Review
    corecore