2,045 research outputs found

    Structures of K0.05Na0.95NbO3 (50–300 K) and K0.30Na0.70NbO3 (100–200 K)

    Get PDF
    Rietveld refinement using neutron powder diffraction data is reported for the potential lead-free piezoelectric material KxNa1 - xNbO3 (x = 0.05, x = 0.3) at low temperatures. The structures were determined to be of rhombohedral symmetry, space group R3c, with the tilt system a-a-a- for both compositions. It was found that some of the structural parameters differ significantly in the two structures, and particularly the NbO6 octahedral strains as a function of temperature. The 300 K profile for K0.05Na0.95NbO3 shows the coexistence of rhombohedral and monoclinic phases, which indicates that the phase boundary is close to room temperature; the phase boundary for K0.30Na0.70NbO3 is found to be at approximately 180 K

    Strong Aperiodic X-ray Variability and Quasi-Periodic Oscillation in X-ray Nova XTE J1550-564

    Get PDF
    We report the discovery of strong aperiodic X-ray variability and quasi-periodic oscillation (QPO) in the X-ray light curves of a new X-ray Nova, XTE J1550-564, and the evolution of the observed temporal properties during the rise of the recent X-ray outburst. The power spectral analysis of the first observation reveals strong aperiodic X-ray variability of the source (~28%), as well as the presence of a QPO at ~82 mHz with fractional rms amplitude ~14% over the 2-60 keV energy range. Also apparent is the first harmonic of the QPO with the amplitude ~9%. As the X-ray flux increases, the source tends to become less variable, and the QPO frequency increases rapidly, from 82 mHz to 4 Hz, over the flux (2-50 keV) range of 1.73-5.75 x 10^{-8} ergs cm^{-2} s^{-1}. The amplitude of the fundamental component of the QPO varies little, while that of the harmonic follows a decreasing trend. The fundamental component strengthens toward high energies, while its harmonic weakens. Initially, the power spectrum is roughly flat at low frequencies and turns into a power law at high frequencies, with the QPO harmonic sitting roughly at the break. In later observations, however, the high-frequency portion of the continuum can actually be better described by a broken power law (as opposed to a simple power law). This effect becomes more apparent at higher energies. The overall amplitude of the continuum shows a similar energy dependence to that of the fundamental component of the QPO. Strong rapid X-ray variability, as well as hard energy spectrum, makes XTE J1550-564 a good black hole candidate. We compare its temporal properties with those of other black hole candidates.Comment: 12 pages, including 5 figures. To appear in ApJ Letters, vol. 512 (1999

    5d SCFTs from Isolated Complete Intersection Singularities

    Full text link
    In this paper, we explore the zoo of 5d superconformal field theories (SCFTs) constructed from M-theory on Isolated Complete Intersection Singularities (ICIS). We systematically investigate the crepant resolution of such singularities, and obtain a classification of rank â©˝10\leqslant 10 models with a smooth crepant resolution and smooth exceptional divisors, as well as a number of infinite sequences with the same smoothness properties. For these models, we study their Coulomb branch properties and compute the flavor symmetry algebra from the resolved CY3 and/or the magnetic quiver. We check the validity of the conjectures relating the properties of the 5d SCFT and the 4d N=2\mathcal{N}=2 SCFT from IIB superstring on the same singularity. When the 4d N=2\mathcal{N}=2 SCFT has a Lagrangian quiver gauge theory description, one can obtain the magnetic quiver of the 5d theory by gauging flavor symmetry, which encodes the 5d Higgs branch information. Regarding the smoothness of the crepant resolution and integrality of 4d Coulomb branch spectrum, we find examples with a smooth resolved CY3 and smooth exceptional divisors, but fractional 4d Coulomb branch spectrum. Moreover, we compute the discrete (higher)-symmetries of the 5d/4d SCFTs from the link topology for a few examples.Comment: v2, 87 page

    On the Solution to the "Frozen Star" Paradox, Nature of Astrophysical Black Holes, non-Existence of Gravitational Singularity in the Physical Universe and Applicability of the Birkhoff's Theorem

    Full text link
    Oppenheimer and Snyder found in 1939 that gravitational collapse in vacuum produces a "frozen star", i.e., the collapsing matter only asymptotically approaches the gravitational radius (event horizon) of the mass, but never crosses it within a finite time for an external observer. Based upon our recent publication on the problem of gravitational collapse in the physical universe for an external observer, the following results are reported here: (1) Matter can indeed fall across the event horizon within a finite time and thus BHs, rather than "frozen stars", are formed in gravitational collapse in the physical universe. (2) Matter fallen into an astrophysical black hole can never arrive at the exact center; the exact interior distribution of matter depends upon the history of the collapse process. Therefore gravitational singularity does not exist in the physical universe. (3) The metric at any radius is determined by the global distribution of matter, i.e., not only by the matter inside the given radius, even in a spherically symmetric and pressureless gravitational system. This is qualitatively different from the Newtonian gravity and the common (mis)understanding of the Birkhoff's Theorem. This result does not contract the "Lemaitre-Tolman-Bondi" solution for an external observer.Comment: 8 pages, 4 figures, invited plenary talk at "The first Galileo-Xu Guangqi conference", Shanghai, China, 2009. To appear in International Journal of Modern Physics D (2010

    Cross-Correlation Detection of Point Sources in WMAP First Year Data

    Get PDF
    We apply a Cross-correlation (CC) method developed previously for detecting gamma-ray point sources to the WMAP first year data by using the Point-Spread Function of WMAP and obtain a full sky CC coefficient map. Analyzing this map, we find that the CC method is a powerful tool to examine the WMAP foreground residuals which can be further cleaned accordingly. Evident foreground signals are found in WMAP foreground cleaned maps and Tegmark cleaned map. In this process 101 point-sources are detected, and 26 of them are new sources besides the originally listed WMAP 208 sources. We estimate the flux of these new sources and verify them by another method. As a result, a revised mask file based on the WMAP first year data is produced by including these new sources.Comment: 14 pages, 10 figures; accepted for publication by ChJA

    Managing appointment booking under customer choices

    Get PDF
    Motivated by the increasing use of online appointment booking platforms, we study how to offer appointment slots to customers to maximize the total number of slots booked. We develop two models, nonsequential offering and sequential offering, to capture different types of interactions between customers and the scheduling system. In these two models, the scheduler offers either a single set of appointment slots for the arriving customer to choose from or multiple sets in sequence, respectively. For the nonsequential model, we identify a static randomized policy, which is asymptotically optimal when the system demand and capacity increase simultaneously, and we further show that offering all available slots at all times has a constant factor of two performance guarantee. For the sequential model, we derive a closed form optimal policy for a large class of instances and develop a simple, effective heuristic for those instances without an explicit optimal policy. By comparing these two models, our study generates useful operational insights for improving the current appointment booking processes. In particular, our analysis reveals an interesting equivalence between the sequential offering model and the nonsequential offering model with perfect customer preference information. This equivalence allows us to apply sequential offering in a wide range of interactive scheduling contexts. Our extensive numerical study shows that sequential offering can significantly improve the slot fill rate (6%\xe2\x80\x938% on average and up to 18% in our testing cases) compared with nonsequential offering. Given the recent and ongoing growth of online and mobile appointment booking platforms, our research findings can be particularly useful to inform user interface design of these booking platforms

    Managing appointment booking under customer choices

    Get PDF
    Motivated by the increasing use of online appointment booking platforms, we study how to offer appointment slots to customers in order to maximize the total number of slots booked. We develop two models, non-sequential offering and sequential offering, to capture different types of interactions between customers and the scheduling system. In these two models, the scheduler offers either a single set of appointment slots for the arriving customer to choose from, or multiple sets in sequence, respectively. For the non-sequential model, we identify a static randomized policy which is asymptotically optimal when the system demand and capacity increase simultaneously, and we further show that offering all available slots at all times has a constant factor of 2 performance guarantee. For the sequential model, we derive a closed-form optimal policy for a large class of instances and develop a simple, effective heuristic for those instances without an explicit optimal policy. By comparing these two models, our study generates useful operational insights for improving the current appointment booking processes. In particular, our analysis reveals an interesting equivalence between the sequential offering model and the non-sequential offering model with perfect customer preference information. This equivalence allows us to apply sequential offering in a wide range of interactive scheduling contexts. Our extensive numerical study shows that sequential offering can significantly improve the slot fill rate (6-8% on average and up to 18% in our testing cases) compared to non-sequential offering

    The Outbursts and Orbit of the Accreting Pulsar GS 1843-02 = 2S 1845-024

    Get PDF
    We present observations of a series of 10 outbursts of pulsed hard X-ray flux from the transient 10.6 mHz accreting pulsar GS 1843-02, using the Burst and Transient Source Experiment on the Compton Gamma Ray Observatory. These outbursts occurred regularly every 242 days, coincident with the ephemeris of the periodic transient GRO J1849-03 (Zhang et al. 1996), which has recently been identified with the SAS 3 source 2S 1845-024 (Soffitta et al. 1998). Our pulsed detection provides the first clear identification of GS 1843-02 with 2S 1845-024. We present a pulse timing analysis which shows that the 2S 1845-024 outbursts occur near the periastron passage of the neutron star's highly eccentric (e = 0.88+-0.01) 242.18+-0.01 day period binary orbit about a high mass (M > 7 solar masses) companion. The orbit and transient outburst pattern strongly suggest the pulsar is in a binary system with a Be star. Our observations show a long-term spin-up trend, with most of the spin-up occurring during the outbursts. From the measured spin-up rates and inferred luminosities we conclude that an accretion disk is present during the outbursts.Comment: Accepted for publication in Astrophysical Journa

    Alternans in Genetically Modified Langendorff-Perfused Murine Hearts Modeling Catecholaminergic Polymorphic Ventricular Tachycardia

    Get PDF
    The relationship between alternans and arrhythmogenicity was studied in genetically modified murine hearts modeling catecholaminergic polymorphic ventricular tachycardia (CPVT) during Langendorff perfusion, before and after treatment with catecholamines and a β-adrenergic antagonist. Heterozygous (RyR2p/s) and homozygous (RyR2s/s) RyR2-P2328S hearts, and wild-type (WT) controls, were studied before and after treatment with epinephrine (100 nM and 1 μM) and propranolol (100 nM). Monophasic action potential recordings demonstrated significantly greater incidences of arrhythmia in RyR2p/s and RyR2s/s hearts as compared to WTs. Arrhythmogenicity in RyR2s/s hearts was associated with alternans, particularly at short baseline cycle lengths. Both phenomena were significantly accentuated by treatment with epinephrine and significantly diminished by treatment with propranolol, in full agreement with clinical expectations. These changes took place, however, despite an absence of changes in mean action potential durations, ventricular effective refractory periods or restitution curve characteristics. Furthermore pooled data from all hearts in which arrhythmia occurred demonstrated significantly greater alternans magnitudes, but similar restitution curve slopes, to hearts that did not demonstrate arrhythmia. These findings thus further validate the RyR2-P2328S murine heart as a model for human CPVT, confirming an alternans phenotype in common with murine genetic models of the Brugada syndrome and the congenital long-QT syndrome type 3. In contrast to these latter similarities, however, this report demonstrates the dissociation of alternans from changes in the properties of restitution curves for the first time in a murine model of a human arrhythmic syndrome

    Expression of factor V by resident macrophages boosts host defense in the peritoneal cavity

    Get PDF
    Macrophages resident in different organs express distinct genes, but understanding how this diversity fits into tissue-specific features is limited. Here, we show that selective expression of coagulation factor V (FV) by resident peritoneal macrophages in mice promotes bacterial clearance in the peritoneal cavity and serves to facilitate the well-known but poorly understood macrophage disappearance reaction. Intravital imaging revealed that resident macrophages were nonadherent in peritoneal fluid during homeostasis. Bacterial entry into the peritoneum acutely induced macrophage adherence and associated bacterial phagocytosis. However, optimal control of bacterial expansion in the peritoneum also required expression of FV by the macrophages to form local clots that effectively brought macrophages and bacteria in proximity and out of the fluid phase. Thus, acute cellular adhesion and resident macrophage-induced coagulation operate independently and cooperatively to meet the challenges of a unique, open tissue environment. These events collectively account for the macrophage disappearance reaction in the peritoneal cavity
    • …
    corecore