221 research outputs found

    Knowledge is Power: Understanding Causality Makes Legal judgment Prediction Models More Generalizable and Robust

    Full text link
    Legal judgment Prediction (LJP), aiming to predict a judgment based on fact descriptions, serves as legal assistance to mitigate the great work burden of limited legal practitioners. Most existing methods apply various large-scale pre-trained language models (PLMs) finetuned in LJP tasks to obtain consistent improvements. However, we discover the fact that the state-of-the-art (SOTA) model makes judgment predictions according to wrong (or non-casual) information, which not only weakens the model's generalization capability but also results in severe social problems like discrimination. Here, we analyze the causal mechanism misleading the LJP model to learn the spurious correlations, and then propose a framework to guide the model to learn the underlying causality knowledge in the legal texts. Specifically, we first perform open information extraction (OIE) to refine the text having a high proportion of causal information, according to which we generate a new set of data. Then, we design a model learning the weights of the refined data and the raw data for LJP model training. The extensive experimental results show that our model is more generalizable and robust than the baselines and achieves a new SOTA performance on two commonly used legal-specific datasets

    Evolutionary-Based Online Motion Planning Framework for Quadruped Robot Jumping

    Full text link
    Offline evolutionary-based methodologies have supplied a successful motion planning framework for the quadrupedal jump. However, the time-consuming computation caused by massive population evolution in offline evolutionary-based jumping framework significantly limits the popularity in the quadrupedal field. This paper presents a time-friendly online motion planning framework based on meta-heuristic Differential evolution (DE), Latin hypercube sampling, and Configuration space (DLC). The DLC framework establishes a multidimensional optimization problem leveraging centroidal dynamics to determine the ideal trajectory of the center of mass (CoM) and ground reaction forces (GRFs). The configuration space is introduced to the evolutionary optimization in order to condense the searching region. Latin hypercube sampling offers more uniform initial populations of DE under limited sampling points, accelerating away from a local minimum. This research also constructs a collection of pre-motion trajectories as a warm start when the objective state is in the neighborhood of the pre-motion state to drastically reduce the solving time. The proposed methodology is successfully validated via real robot experiments for online jumping trajectory optimization with different jumping motions (e.g., ordinary jumping, flipping, and spinning).Comment: IROS202

    Generative Actor-Critic: An Off-policy Algorithm Using the Push-forward Model

    Full text link
    Model-free deep reinforcement learning has achieved great success in many domains, such as video games, recommendation systems and robotic control tasks. In continuous control tasks, widely used policies with Gaussian distributions results in ineffective exploration of environments and limited performance of algorithms in many cases. In this paper, we propose a density-free off-policy algorithm, Generative Actor-Critic(GAC), using the push-forward model to increase the expressiveness of policies, which also includes an entropy-like technique, MMD-entropy regularizer, to balance the exploration and exploitation. Additionnally, we devise an adaptive mechanism to automatically scale this regularizer, which further improves the stability and robustness of GAC. The experiment results show that push-forward policies possess desirable features, such as multi-modality, which can improve the efficiency of exploration and asymptotic performance of algorithms obviously
    • …
    corecore