2 research outputs found

    Seasonal variation and size distribution of biogenic secondary organic aerosols at urban and continental background sites of China

    No full text
    Size-resolved biogenic secondary organic aerosols (BSOA) derived from isoprene and monoterpene photooxidation in Qinghai Lake, Tibetan Plateau (a continental background site) and five cities of China were measured using gas chromatography/mass spectrometry (GC/MS). Concentrations of the determined BSOA are higher in the cities than in the background and are also higher in summer than in winter. Moreover, strong positive correlations (R2&nbsp;=&nbsp;0.44&ndash;0.90) between BSOA and sulfate were found at the six sites, suggesting that anthropogenic pollution (i.e., sulfate) could enhance SOA formation, because sulfate provides a surface favorable for acid-catalyzed formation of BSOA. Size distribution measurements showed that most of the determined SOA tracers are enriched in the fine mode (&lt;&nbsp;3.3&nbsp;&mu;m) except for cis-pinic and cis-pinonic acids, both presented a comparable mass in the fine and coarse (&gt;&nbsp;3.3&nbsp;&mu;m) modes, respectively. Mass ratio of oxidation products derived from isoprene to those from monoterpene in the five urban regions during summer are much less than those in Qinghai Lake region. In addition, in the five urban regions relative abundances of monoterpene oxidation products to SOA are much higher than those of isoprene. Such phenomena suggest that BSOA derived from monoterpenes are more abundant than those from isoprene in Chinese urban areas.</p

    Chemical characteristics of haze particles in Xi'an during Chinese Spring Festival: Impact of fireworks burning

    No full text
    Fireworks burning releases massive fine particles and gaseous pollutants, significantly deteriorating air quality during Chinese Lunar New Year (LNY) period. To investigate the impact of the fireworks burning on the atmospheric aerosol chemistry, 1-hr time resolution of PM2.5 samples in Xi'an during the winter of 2016 including the LNY were collected and detected for inorganic ions, acidity and liquid water content (LWC) of the fine aerosols. PM2.5 during the LNY was 167 ± 87 μg/m3, two times higher than the China National Ambient Air Quality Standard (75 μg/m3). K+ (28 wt.% of the total ion mass) was the most abundant ion in the LNY period, followed by SO42 − (25 wt.%) and Cl− (18 wt.%). In contrast, NO3− (34 wt.%) was the most abundant species in the haze periods (hourly PM2.5 > 75 μg/m3), followed by SO42 − (29.2 wt.%) and NH4+ (16.3 wt.%), while SO42 - (35 wt.%) was the most abundant species in the clean periods (hourly PM2.5 < 75 μg/m3), followed by NO3− (23.1 wt.%) and NH4+ (11 wt.%). Being different from the acidic nature in the non-LNY periods, aerosol in the LNY period presented an alkaline nature with a pH value of 7.8 ± 1.3. LWC during the LNY period showed a robust linear correlation with K2SO4 and KCl, suggesting that aerosol hygroscopicity was dominated by inorganic salts derived from fireworks burning. Analysis of correlations between the ratios of NO3−/SO42 − and NH4+/SO42 − indicated that heterogeneous reaction of HNO3 with NH3 was an important formation pathway of particulate nitrate and ammonium during the LNY period
    corecore