5 research outputs found

    Induction of cytoprotective autophagy in PC-12 cells by cadmium

    Get PDF
    AbstractLaboratory data have demonstrated that cadmium (Cd) may induce neuronal apoptosis. However, little is known about the role of autophagy in neurons. In this study, cell viability decreased in a dose- and time-dependent manner after treatment with Cd in PC-12 cells. As cells were exposed to Cd, the levels of LC3-II proteins became elevated, specific punctate distribution of endogenous LC3-II increased, and numerous autophagosomes appeared, which suggest that Cd induced a high level of autophagy. In the late stages of autophagy, an increase in the apoptosis ratio was observed. Likewise, pre-treatment with chloroquine (an autophagic inhibitor) and rapamycin (an autophagic inducer) resulted in an increased and decreased percentage of apoptosis in contrast to other Cd-treated groups, respectively. The results indicate that autophagy delayed apoptosis in Cd-treated PC-12 cells. Furthermore, co-treatment of cells with chloroquine reduced autophagy and cell activity. However, rapamycin had an opposite effect on autophagy and cell activity. Moreover, class III PI3 K/beclin-1/Bcl-2 signaling pathways served a function in Cd-induced autophagy. The findings suggest that Cd can induce cytoprotective autophagy by activating class III PI3 K/beclin-1/Bcl-2 signaling pathways. In sum, this study strongly suggests that autophagy may serve a positive function in the reduction of Cd-induced cytotoxicity

    Recent Progress in Gd-Containing Materials for Neutron Shielding Applications: A Review

    No full text
    With the rising demand for nuclear energy, the storage/transportation of radioactive nuclear by-products are critical safety issues for humans and the environment. These by-products are closely related to various nuclear radiations. In particular, neutron radiation requires specific protection by neutron shielding materials due to its high penetrating ability to cause irradiation damage. Herein, a basic overview of neutron shielding is presented. Since gadolinium (Gd) has the largest thermal neutron capture cross-section among various neutron absorbing elements, it is an ideal neutron absorber for shielding applications. In the last two decades, there have been many newly developed Gd-containing (i.e., inorganic nonmetallic-based, polymer-based, and metallic-based) shielding materials developed to attenuate and absorb the incident neutrons. On this basis, we present a comprehensive review of the design, processing methods, microstructure characteristics, mechanical properties, and neutron shielding performance of these materials in each category. Furthermore, current challenges for the development and application of shielding materials are discussed. Finally, the potential research directions are highlighted in this rapidly developing field
    corecore