160 research outputs found

    Expectation-Maximizing Network Reconstruction and MostApplicable Network Types Based on Binary Time Series Data

    Full text link
    Based on the binary time series data of social infection dynamics, we propose a general framework to reconstruct 2-simplex complexes with two-body and three-body interactions by combining the maximum likelihood estimation in statistical inference and introducing the expectation maximization. In order to improve the code running efficiency, the whole algorithm adopts vectorization expression. Through the inference of maximum likelihood estimation, the vectorization expression of the edge existence probability can be obtained, and through the probability matrix, the adjacency matrix of the network can be estimated. We apply a two-step scheme to improve the effectiveness of network reconstruction while reducing the amount of computation significantly. The framework has been tested on different types of complex networks. Among them, four kinds of networks can obtain high reconstruction effectiveness. Besides, we study the influence of noise data or random interference and prove the robustness of the framework, then the effects of two kinds of hyper-parameters on the experimental results are tested. Finally, we analyze which type of network is more suitable for this framework, and propose methods to improve the effectiveness of the experimental results

    Rumor Detection with Diverse Counterfactual Evidence

    Full text link
    The growth in social media has exacerbated the threat of fake news to individuals and communities. This draws increasing attention to developing efficient and timely rumor detection methods. The prevailing approaches resort to graph neural networks (GNNs) to exploit the post-propagation patterns of the rumor-spreading process. However, these methods lack inherent interpretation of rumor detection due to the black-box nature of GNNs. Moreover, these methods suffer from less robust results as they employ all the propagation patterns for rumor detection. In this paper, we address the above issues with the proposed Diverse Counterfactual Evidence framework for Rumor Detection (DCE-RD). Our intuition is to exploit the diverse counterfactual evidence of an event graph to serve as multi-view interpretations, which are further aggregated for robust rumor detection results. Specifically, our method first designs a subgraph generation strategy to efficiently generate different subgraphs of the event graph. We constrain the removal of these subgraphs to cause the change in rumor detection results. Thus, these subgraphs naturally serve as counterfactual evidence for rumor detection. To achieve multi-view interpretation, we design a diversity loss inspired by Determinantal Point Processes (DPP) to encourage diversity among the counterfactual evidence. A GNN-based rumor detection model further aggregates the diverse counterfactual evidence discovered by the proposed DCE-RD to achieve interpretable and robust rumor detection results. Extensive experiments on two real-world datasets show the superior performance of our method. Our code is available at https://github.com/Vicinity111/DCE-RD

    Experimental demonstration of PAM-DWMT for passive optical network

    Get PDF
    We experimentally demonstrate a discrete wavelet multitone (DWMT) modulation scheme based on pulse amplitude modulation (PAM) for next generation passive optical network (PON), which offers high tolerance against chromatic dispersion, high spectral efficiency, low peak to average power ratio (PAPR) and low side lobes. The experimental results show the chromatic dispersion induced power penalties are negligible after 20km fiber transmission. Compared with orthogonal frequency division multiplexing (OFDM), DWMT offers a better receiver sensitivity

    Accurate and Efficient Event-based Semantic Segmentation Using Adaptive Spiking Encoder-Decoder Network

    Full text link
    Leveraging the low-power, event-driven computation and the inherent temporal dynamics, spiking neural networks (SNNs) are potentially ideal solutions for processing dynamic and asynchronous signals from event-based sensors. However, due to the challenges in training and the restrictions in architectural design, there are limited examples of competitive SNNs in the realm of event-based dense prediction when compared to artificial neural networks (ANNs). In this paper, we present an efficient spiking encoder-decoder network designed for large-scale event-based semantic segmentation tasks. This is achieved by optimizing the encoder using a hierarchical search method. To enhance learning from dynamic event streams, we harness the inherent adaptive threshold of spiking neurons to modulate network activation. Moreover, we introduce a dual-path Spiking Spatially-Adaptive Modulation (SSAM) block, specifically designed to enhance the representation of sparse events, thereby considerably improving network performance. Our proposed network achieves a 72.57% mean intersection over union (MIoU) on the DDD17 dataset and a 57.22% MIoU on the recently introduced, larger DSEC-Semantic dataset. This performance surpasses the current state-of-the-art ANNs by 4%, whilst consuming significantly less computational resources. To the best of our knowledge, this is the first study demonstrating SNNs outperforming ANNs in demanding event-based semantic segmentation tasks, thereby establishing the vast potential of SNNs in the field of event-based vision. Our source code will be made publicly accessible

    Computational Optics Meet Domain Adaptation: Transferring Semantic Segmentation Beyond Aberrations

    Full text link
    Semantic scene understanding with Minimalist Optical Systems (MOS) in mobile and wearable applications remains a challenge due to the corrupted imaging quality induced by optical aberrations. However, previous works only focus on improving the subjective imaging quality through computational optics, i.e. Computational Imaging (CI) technique, ignoring the feasibility in semantic segmentation. In this paper, we pioneer to investigate Semantic Segmentation under Optical Aberrations (SSOA) of MOS. To benchmark SSOA, we construct Virtual Prototype Lens (VPL) groups through optical simulation, generating Cityscapes-ab and KITTI-360-ab datasets under different behaviors and levels of aberrations. We look into SSOA via an unsupervised domain adaptation perspective to address the scarcity of labeled aberration data in real-world scenarios. Further, we propose Computational Imaging Assisted Domain Adaptation (CIADA) to leverage prior knowledge of CI for robust performance in SSOA. Based on our benchmark, we conduct experiments on the robustness of state-of-the-art segmenters against aberrations. In addition, extensive evaluations of possible solutions to SSOA reveal that CIADA achieves superior performance under all aberration distributions, paving the way for the applications of MOS in semantic scene understanding. Code and dataset will be made publicly available at https://github.com/zju-jiangqi/CIADA.Comment: Code and dataset will be made publicly available at https://github.com/zju-jiangqi/CIAD

    Automotive Object Detection via Learning Sparse Events by Temporal Dynamics of Spiking Neurons

    Full text link
    Event-based sensors, with their high temporal resolution (1us) and dynamical range (120dB), have the potential to be deployed in high-speed platforms such as vehicles and drones. However, the highly sparse and fluctuating nature of events poses challenges for conventional object detection techniques based on Artificial Neural Networks (ANNs). In contrast, Spiking Neural Networks (SNNs) are well-suited for representing event-based data due to their inherent temporal dynamics. In particular, we demonstrate that the membrane potential dynamics can modulate network activity upon fluctuating events and strengthen features of sparse input. In addition, the spike-triggered adaptive threshold can stabilize training which further improves network performance. Based on this, we develop an efficient spiking feature pyramid network for event-based object detection. Our proposed SNN outperforms previous SNNs and sophisticated ANNs with attention mechanisms, achieving a mean average precision (map50) of 47.7% on the Gen1 benchmark dataset. This result significantly surpasses the previous best SNN by 9.7% and demonstrates the potential of SNNs for event-based vision. Our model has a concise architecture while maintaining high accuracy and much lower computation cost as a result of sparse computation. Our code will be publicly available

    CoBEV: Elevating Roadside 3D Object Detection with Depth and Height Complementarity

    Full text link
    Roadside camera-driven 3D object detection is a crucial task in intelligent transportation systems, which extends the perception range beyond the limitations of vision-centric vehicles and enhances road safety. While previous studies have limitations in using only depth or height information, we find both depth and height matter and they are in fact complementary. The depth feature encompasses precise geometric cues, whereas the height feature is primarily focused on distinguishing between various categories of height intervals, essentially providing semantic context. This insight motivates the development of Complementary-BEV (CoBEV), a novel end-to-end monocular 3D object detection framework that integrates depth and height to construct robust BEV representations. In essence, CoBEV estimates each pixel's depth and height distribution and lifts the camera features into 3D space for lateral fusion using the newly proposed two-stage complementary feature selection (CFS) module. A BEV feature distillation framework is also seamlessly integrated to further enhance the detection accuracy from the prior knowledge of the fusion-modal CoBEV teacher. We conduct extensive experiments on the public 3D detection benchmarks of roadside camera-based DAIR-V2X-I and Rope3D, as well as the private Supremind-Road dataset, demonstrating that CoBEV not only achieves the accuracy of the new state-of-the-art, but also significantly advances the robustness of previous methods in challenging long-distance scenarios and noisy camera disturbance, and enhances generalization by a large margin in heterologous settings with drastic changes in scene and camera parameters. For the first time, the vehicle AP score of a camera model reaches 80% on DAIR-V2X-I in terms of easy mode. The source code will be made publicly available at https://github.com/MasterHow/CoBEV.Comment: The source code will be made publicly available at https://github.com/MasterHow/CoBE

    Behind Every Domain There is a Shift: Adapting Distortion-aware Vision Transformers for Panoramic Semantic Segmentation

    Full text link
    In this paper, we address panoramic semantic segmentation which is under-explored due to two critical challenges: (1) image distortions and object deformations on panoramas; (2) lack of semantic annotations in the 360-degree imagery. To tackle these problems, first, we propose the upgraded Transformer for Panoramic Semantic Segmentation, i.e., Trans4PASS+, equipped with Deformable Patch Embedding (DPE) and Deformable MLP (DMLPv2) modules for handling object deformations and image distortions whenever (before or after adaptation) and wherever (shallow or deep levels). Second, we enhance the Mutual Prototypical Adaptation (MPA) strategy via pseudo-label rectification for unsupervised domain adaptive panoramic segmentation. Third, aside from Pinhole-to-Panoramic (Pin2Pan) adaptation, we create a new dataset (SynPASS) with 9,080 panoramic images, facilitating Synthetic-to-Real (Syn2Real) adaptation scheme in 360-degree imagery. Extensive experiments are conducted, which cover indoor and outdoor scenarios, and each of them is investigated with Pin2Pan and Syn2Real regimens. Trans4PASS+ achieves state-of-the-art performances on four domain adaptive panoramic semantic segmentation benchmarks. Code is available at https://github.com/jamycheung/Trans4PASS.Comment: Extended version of CVPR 2022 paper arXiv:2203.01452. Code is available at https://github.com/jamycheung/Trans4PAS
    corecore