5,459 research outputs found

    Quantum Transport Simulation of III-V TFETs with Reduced-Order K.P Method

    Full text link
    III-V tunneling field-effect transistors (TFETs) offer great potentials in future low-power electronics application due to their steep subthreshold slope and large "on" current. Their 3D quantum transport study using non-equilibrium Green's function method is computationally very intensive, in particular when combined with multiband approaches such as the eight-band K.P method. To reduce the numerical cost, an efficient reduced-order method is developed in this article and applied to study homojunction InAs and heterojunction GaSb-InAs nanowire TFETs. Device performances are obtained for various channel widths, channel lengths, crystal orientations, doping densities, source pocket lengths, and strain conditions

    Zero-Shot Visual Recognition using Semantics-Preserving Adversarial Embedding Networks

    Full text link
    We propose a novel framework called Semantics-Preserving Adversarial Embedding Network (SP-AEN) for zero-shot visual recognition (ZSL), where test images and their classes are both unseen during training. SP-AEN aims to tackle the inherent problem --- semantic loss --- in the prevailing family of embedding-based ZSL, where some semantics would be discarded during training if they are non-discriminative for training classes, but could become critical for recognizing test classes. Specifically, SP-AEN prevents the semantic loss by introducing an independent visual-to-semantic space embedder which disentangles the semantic space into two subspaces for the two arguably conflicting objectives: classification and reconstruction. Through adversarial learning of the two subspaces, SP-AEN can transfer the semantics from the reconstructive subspace to the discriminative one, accomplishing the improved zero-shot recognition of unseen classes. Comparing with prior works, SP-AEN can not only improve classification but also generate photo-realistic images, demonstrating the effectiveness of semantic preservation. On four popular benchmarks: CUB, AWA, SUN and aPY, SP-AEN considerably outperforms other state-of-the-art methods by an absolute performance difference of 12.2\%, 9.3\%, 4.0\%, and 3.6\% in terms of harmonic mean value

    Unconventional Floquet topological phases from quantum engineering of band inversion surfaces

    Full text link
    Floquet engineering provides a toolbox for the realization of novel quantum phases without static counterparts, while conventionally the realization may rely on the manipulation of complex temporal evolution. Here we propose a systematic and high-precision scheme to realize unconventional Floquet topological phases by engineering local band structures in particular momentum subspace called band inversion surfaces (BISs). This scheme is based on a new bulk-boundary correspondence that for a class of generic dd-dimensional periodically driven systems, the local topological structure formed in each BIS uniquely determines the features of gapless boundary modes. By engineering the BIS configuration we demonstrate a highly efficient approach to realize, manipulate, and detect novel Floquet topological phases. In particular, we predict a two-dimensional (2D) anomalous Floquet valley-Hall phase which carries trivial global bulk topological invariants but features protected counter-propagating edge states in each quasienergy gap. The unconventional nature of this novel 2D phase is further illustrated by the examination of edge geometry dependence and its robustness to disorder scattering. Anomalous chiral topological phases with valley protection in higher dimension are also predicted and studied. Our systematic and highly feasible scheme opens a new route to realize and engineer unconventional Floquet topological phases for ultracold atoms and other quantum simulators.Comment: 16 pages, 7 figures. To appear in PRX Quantu
    • …
    corecore