53 research outputs found
On the size-dependent fatigue behaviour of laser powder bed fusion Ti-6Al-4V
A sample size effect which influences the fatigue behaviour of laser powder bed fusion Ti-6Al-4V is identified and quantified. Two cylindrical samples are considered: ∅ 1.3 mm and ∅ 2.0 mm. The larger specimen demonstrates better fatigue resistance particularly in the high-cycle regime, with the differing surface roughness contributing to this effect. It is also confirmed that processing-induced porosity can compromise the fatigue performance even when the initiation sites are surface defects. The larger contribution of porosity to the fatigue fracture process of the larger specimen results in a higher scatter in the fatigue life. Differences in microstructure do not seem to contribute strongly to the variation in fatigue properties of the two specimens, but we present some evidence that the coarser microstructure of the larger specimen promotes a stronger tolerance to defects and induces more tortuous crack paths which hinders fatigue crack growth
On the size-dependent fatigue behaviour of laser powder bed fusion Ti-6Al-4V
A sample size effect which influences the fatigue behaviour of laser powder bed fusion Ti-6Al-4V is identified and quantified. Two cylindrical samples are considered: ∅ 1.3 mm and ∅ 2.0 mm. The larger specimen demonstrates better fatigue resistance particularly in the high-cycle regime, with the differing surface roughness contributing to this effect. It is also confirmed that processing-induced porosity can compromise the fatigue performance even when the initiation sites are surface defects. The larger contribution of porosity to the fatigue fracture process of the larger specimen results in a higher scatter in the fatigue life. Differences in microstructure do not seem to contribute strongly to the variation in fatigue properties of the two specimens, but we present some evidence that the coarser microstructure of the larger specimen promotes a stronger tolerance to defects and induces more tortuous crack paths which hinders fatigue crack growth
Stochastic or deterministic:Duality of fatigue behaviour of 3D-printed meta-biomaterials
The two deformation modes of meta-biomaterials during cyclic loading have been revealed: stochastic and deterministic strut failure processes. Biomimetic Voronoi structures with a range of strut thicknesses and number of cells per unit volume are printed. We show that when the strut thickness is 200 μm or above, the fatigue fracture process of the lattice is deterministic and the fatigue scatters are below 15%. As the strut is thinned to 150 μm, the local failures occur randomly within the structure, which may lead to a high fatigue scatter (>30%). The two distinct behaviours result from the processing limit of the laser powder bed fusion technique. We demonstrate that the fatigue scatter and the location of the failure process within the lattice are related to the probability that a cluster of unconnected struts larger than a critical value can exist within the lattice. Unlike solid parts, porosity hardly triggers any damage in metallic lattices during cyclic deformation. The discovery of the Janus-like failure process opens up our understanding of meta-biomaterials and defines the pathway towards the design of mechanically durable intricate implants
Magnetic structure and Ising-like antiferromagnetism in the bilayer triangular lattice compound NdZnPO
The complex interplay of spin frustration and quantum fluctuations in
low-dimensional quantum materials leads to a variety of intriguing phenomena.
This research focuses on a detailed analysis of the magnetic behavior exhibited
by NdZnPO, a bilayer spin-1/2 triangular lattice antiferromagnet. The
investigation employs magnetization, specific heat, and powder neutron
scattering measurements. At zero field, a long-range magnetic order is observed
at . Powder neutron diffraction experiments show the
Ising-like magnetic moments along the -axis, revealing a stripe-like
magnetic structure with three equivalent magnetic propagation vectors.
Application of a magnetic field along the -axis suppresses the
antiferromagnetic order, leading to a fully polarized ferromagnetic state above
. This transition is accompanied by notable enhancements
in the nuclear Schottky contribution. Moreover, the absence of spin frustration
and expected field-induced plateau-like phases are remarkable observations.
Detailed calculations of magnetic dipolar interactions revealed complex
couplings reminiscent of a honeycomb lattice, suggesting the potential
emergence of Kitaev-like physics within this system. This comprehensive study
of the magnetic properties of NdZnPO highlights unresolved intricacies,
underscoring the imperative for further exploration to unveil the underlying
governing mechanisms.Comment: 11 pages, 6 figure
The Asian arowana (<i>Scleropages formosus</i>) genome provides new insights into the evolution of an early lineage of teleosts
The Asian arowana (Scleropages formosus), one of the world’s most expensive cultivated ornamental fishes, is an endangered species. It represents an ancient lineage of teleosts: the Osteoglossomorpha. Here, we provide a high-quality chromosome-level reference genome of a female golden-variety arowana using a combination of deep shotgun sequencing and high-resolution linkage mapping. In addition, we have also generated two draft genome assemblies for the red and green varieties. Phylogenomic analysis supports a sister group relationship between Osteoglossomorpha (bonytongues) and Elopomorpha (eels and relatives), with the two clades together forming a sister group of Clupeocephala which includes all the remaining teleosts. The arowana genome retains the full complement of eight Hox clusters unlike the African butterfly fish (Pantodon buchholzi), another bonytongue fish, which possess only five Hox clusters. Differential gene expression among three varieties provides insights into the genetic basis of colour variation. A potential heterogametic sex chromosome is identified in the female arowana karyotype, suggesting that the sex is determined by a ZW/ZZ sex chromosomal system. The high-quality reference genome of the golden arowana and the draft assemblies of the red and green varieties are valuable resources for understanding the biology, adaptation and behaviour of Asian arowanas
The Asian Arowana (Scleropages formosus) Genome Provides New Insights into the Evolution of an Early Lineage of Teleosts
The Asian arowana (Scleropages formosus), one of the world’s most expensive cultivated ornamental fishes, is an endangered species. It represents an ancient lineage of teleosts: the Osteoglossomorpha. Here, we provide a high-quality chromosome-level reference genome of a female golden-variety arowana using a combination of deep shotgun sequencing and high-resolution linkage mapping. In addition, we have also generated two draft genome assemblies for the red and green varieties. Phylogenomic analysis supports a sister group relationship between Osteoglossomorpha (bonytongues) and Elopomorpha (eels and relatives), with the two clades together forming a sister group of Clupeocephala which includes all the remaining teleosts. The arowana genome retains the full complement of eight Hox clusters unlike the African butterfly fish (Pantodon buchholzi), another bonytongue fish, which possess only five Hox clusters. Differential gene expression among three varieties provides insights into the genetic basis of colour variation. A potential heterogametic sex chromosome is identified in the female arowana karyotype, suggesting that the sex is determined by a ZW/ZZ sex chromosomal system. The high-quality reference genome of the golden arowana and the draft assemblies of the red and green varieties are valuable resources for understanding the biology, adaptation and behaviour of Asian arowanas
Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples
Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts
Synthesis of Metarhizium anisopliae–Chitosan Nanoparticles and Their Pathogenicity against Plutella xylostella (Linnaeus)
Nanotechnology is increasingly being used in areas of pesticide production and pest management. This study reports the isolation and virulence of a new Metarhizium anisopliae isolate SM036, along with the synthesis and characterization of M. anisopliae–chitosan nanoparticles followed by studies on the efficacy of nanoparticles against Plutella xylostella. The newly identified strain proved pathogenic to P. xylostella under laboratory conditions. The characterization of M. anisopliae–chitosan nanoparticles through different analytical techniques showed the successful synthesis of nanoparticles. SEM and HRTEM images confirmed the synthesis of spherical-shaped nanoparticles; X-ray diffractogram showed strong peaks between 2θ values of 16–30°; and atomic force microscopy (AFM) analysis revealed a particle size of 75.83 nm for M. anisopliae–chitosan nanoparticles, respectively. The bioassay studies demonstrated that different concentrations of M. anisopliae–chitosan nanoparticles were highly effective against second instar P. xylostella under laboratory and semi-field conditions. These findings suggest that M. anisopliae–chitosan nanoparticles can potentially be used in biorational P. xylostella management programs
- …