347 research outputs found
Object-Oriented Dynamics Learning through Multi-Level Abstraction
Object-based approaches for learning action-conditioned dynamics has
demonstrated promise for generalization and interpretability. However, existing
approaches suffer from structural limitations and optimization difficulties for
common environments with multiple dynamic objects. In this paper, we present a
novel self-supervised learning framework, called Multi-level Abstraction
Object-oriented Predictor (MAOP), which employs a three-level learning
architecture that enables efficient object-based dynamics learning from raw
visual observations. We also design a spatial-temporal relational reasoning
mechanism for MAOP to support instance-level dynamics learning and handle
partial observability. Our results show that MAOP significantly outperforms
previous methods in terms of sample efficiency and generalization over novel
environments for learning environment models. We also demonstrate that learned
dynamics models enable efficient planning in unseen environments, comparable to
true environment models. In addition, MAOP learns semantically and visually
interpretable disentangled representations.Comment: Accepted to the Thirthy-Fourth AAAI Conference On Artificial
Intelligence (AAAI), 202
Learning the Joint Representation of Heterogeneous Temporal Events for Clinical Endpoint Prediction
The availability of a large amount of electronic health records (EHR)
provides huge opportunities to improve health care service by mining these
data. One important application is clinical endpoint prediction, which aims to
predict whether a disease, a symptom or an abnormal lab test will happen in the
future according to patients' history records. This paper develops deep
learning techniques for clinical endpoint prediction, which are effective in
many practical applications. However, the problem is very challenging since
patients' history records contain multiple heterogeneous temporal events such
as lab tests, diagnosis, and drug administrations. The visiting patterns of
different types of events vary significantly, and there exist complex nonlinear
relationships between different events. In this paper, we propose a novel model
for learning the joint representation of heterogeneous temporal events. The
model adds a new gate to control the visiting rates of different events which
effectively models the irregular patterns of different events and their
nonlinear correlations. Experiment results with real-world clinical data on the
tasks of predicting death and abnormal lab tests prove the effectiveness of our
proposed approach over competitive baselines.Comment: 8 pages, this paper has been accepted by AAAI 201
KOIOS: Top-k Semantic Overlap Set Search
We study the top-k set similarity search problem using semantic overlap.
While vanilla overlap requires exact matches between set elements, semantic
overlap allows elements that are syntactically different but semantically
related to increase the overlap. The semantic overlap is the maximum matching
score of a bipartite graph, where an edge weight between two set elements is
defined by a user-defined similarity function, e.g., cosine similarity between
embeddings. Common techniques like token indexes fail for semantic search since
similar elements may be unrelated at the character level. Further, verifying
candidates is expensive (cubic versus linear for syntactic overlap), calling
for highly selective filters. We propose KOIOS, the first exact and efficient
algorithm for semantic overlap search. KOIOS leverages sophisticated filters to
minimize the number of required graph-matching calculations. Our experiments
show that for medium to large sets less than 5% of the candidate sets need
verification, and more than half of those sets are further pruned without
requiring the expensive graph matching. We show the efficiency of our algorithm
on four real datasets and demonstrate the improved result quality of semantic
over vanilla set similarity search
The rheological properties of shear thickening fluid reinforced with SiC nanowires
The rheological properties of shear thickening fluid (STF) reinforced with SiC nanowires were investigated in this paper. Pure STF consists of 56 vol% silica nano-particles and polyethylene glycol 400 (PEG 400) solvent was fabricated; and a specific amount of SiC nanowires were dispersed into this pure STF, and then the volume fraction of PEG400 was adjusted to maintain the volume fraction of solid phase in the STF at a constant of 56%. The results showed there was almost 30% increase in the initial and shear thickening viscosity of the STF reinforced with SiC nanowires compared to the pure STF. Combining with the hydrodynamic cluster theory, the effect of the mechanism of SiC nanowire on the viscosity of STF was discussed, and based on the experimental results, an analytical model of viscosity was used to describe the rheological properties of STF, which agreed with the experimental results
- …