14,273 research outputs found

    A Mini Immersed Finite Element Method for Two-Phase Stokes Problems on Cartesian Meshes

    Full text link
    This paper presents a mini immersed finite element (IFE) method for solving two- and three-dimensional two-phase Stokes problems on Cartesian meshes. The IFE space is constructed from the conventional mini element with shape functions modified on interface elements according to interface jump conditions, while keeping the degrees of freedom unchanged. Both discontinuous viscosity coefficients and surface forces are considered in the construction. The interface is approximated via discrete level set functions and explicit formulas of IFE basis functions and correction functions are derived, which make the IFE method easy to implement. The optimal approximation capabilities of the IFE space and the inf-sup stability and the optimal a priori error estimate of the IFE method are derived rigorously with constants independent of the mesh size and how the interface cuts the mesh. It is also proved that the condition number has the usual bound independent of the interface. Numerical experiments are provided to confirm the theoretical results

    Observation of electric current induced by optically injected spin current

    Get PDF
    A normally incident light of linear polarization injects a pure spin current in a strip of 2-dimensional electron gas with spin-orbit coupling. We report observation of an electric current with a butterfly-like pattern induced by such a light shed on the vicinity of a crossbar shaped InGaAs/InAlAs quantum well. Its light polarization dependence is the same as that of the spin current. We attribute the observed electric current to be converted from the optically injected spin current caused by scatterings near the crossing. Our observation provides a realistic technique to detect spin currents, and opens a new route to study the spin-related science and engineering in semiconductors.Comment: 15 pages, 4 figure
    • …
    corecore