55 research outputs found

    Rateless-Coding-Assisted Multi-Packet Spreading over Mobile Networks

    Full text link
    A novel Rateless-coding-assisted Multi-Packet Relaying (RMPR) protocol is proposed for large-size data spreading in mobile wireless networks. With this lightweight and robust protocol, the packet redundancy is reduced by a factor of n\sqrt n, while the spreading time is reduced at least by a factor of ln(n)\ln (n). Closed-form bounds and explicit non-asymptotic results are presented, which are further validated through simulations. Besides, the packet duplication phenomenon in the network setting is analyzed for the first time

    Faster Information Propagation on Highways: a Virtual MIMO Approach

    Full text link
    In vehicular communications, traffic-related information should be spread over the network as quickly as possible to maintain a safe and reliable transportation system. This motivates us to develop more efficient information propagation schemes. In this paper, we propose a novel cluster-based cooperative information forwarding scheme, in which the vehicles opportunistically form virtual antenna arrays to boost one-hop transmission range and therefore accelerate information propagation along the highway. Both closed-form results of the transmission range gain and the improved Information Propagation Speed (IPS) are derived and verified by simulations. It is observed that the proposed scheme demonstrates the most significant IPS gain in moderate traffic scenarios, whereas too dense or too sparse vehicle density results in less gain. Moreover, it is also shown that increased mobility offers more contact opportunities and thus facilitates information propagation.Comment: IEEE 2014 Global Telecommunications Conference (GLOBECOM 2014) - Communication Theory Symposiu

    Mobile Conductance in Sparse Networks and Mobility-Connectivity Tradeoff

    Full text link
    In this paper, our recently proposed mobile-conductance based analytical framework is extended to the sparse settings, thus offering a unified tool for analyzing information spreading in mobile networks. A penalty factor is identified for information spreading in sparse networks as compared to the connected scenario, which is then intuitively interpreted and verified by simulations. With the analytical results obtained, the mobility-connectivity tradeoff is quantitatively analyzed to determine how much mobility may be exploited to make up for network connectivity deficiency.Comment: Accepted to ISIT 201

    Soft Consistency Reconstruction: A Robust 1-bit Compressive Sensing Algorithm

    Full text link
    A class of recovering algorithms for 1-bit compressive sensing (CS) named Soft Consistency Reconstructions (SCRs) are proposed. Recognizing that CS recovery is essentially an optimization problem, we endeavor to improve the characteristics of the objective function under noisy environments. With a family of re-designed consistency criteria, SCRs achieve remarkable counter-noise performance gain over the existing counterparts, thus acquiring the desired robustness in many real-world applications. The benefits of soft decisions are exemplified through structural analysis of the objective function, with intuition described for better understanding. As expected, through comparisons with existing methods in simulations, SCRs demonstrate preferable robustness against noise in low signal-to-noise ratio (SNR) regime, while maintaining comparable performance in high SNR regime
    corecore