406 research outputs found

    Rateless-Coding-Assisted Multi-Packet Spreading over Mobile Networks

    Full text link
    A novel Rateless-coding-assisted Multi-Packet Relaying (RMPR) protocol is proposed for large-size data spreading in mobile wireless networks. With this lightweight and robust protocol, the packet redundancy is reduced by a factor of n\sqrt n, while the spreading time is reduced at least by a factor of ln(n)\ln (n). Closed-form bounds and explicit non-asymptotic results are presented, which are further validated through simulations. Besides, the packet duplication phenomenon in the network setting is analyzed for the first time

    Mobile Conductance in Sparse Networks and Mobility-Connectivity Tradeoff

    Full text link
    In this paper, our recently proposed mobile-conductance based analytical framework is extended to the sparse settings, thus offering a unified tool for analyzing information spreading in mobile networks. A penalty factor is identified for information spreading in sparse networks as compared to the connected scenario, which is then intuitively interpreted and verified by simulations. With the analytical results obtained, the mobility-connectivity tradeoff is quantitatively analyzed to determine how much mobility may be exploited to make up for network connectivity deficiency.Comment: Accepted to ISIT 201

    Location-Aided Fast Distributed Consensus in Wireless Networks

    Full text link
    Existing works on distributed consensus explore linear iterations based on reversible Markov chains, which contribute to the slow convergence of the algorithms. It has been observed that by overcoming the diffusive behavior of reversible chains, certain nonreversible chains lifted from reversible ones mix substantially faster than the original chains. In this paper, we investigate the idea of accelerating distributed consensus via lifting Markov chains, and propose a class of Location-Aided Distributed Averaging (LADA) algorithms for wireless networks, where nodes' coarse location information is used to construct nonreversible chains that facilitate distributed computing and cooperative processing. First, two general pseudo-algorithms are presented to illustrate the notion of distributed averaging through chain-lifting. These pseudo-algorithms are then respectively instantiated through one LADA algorithm on grid networks, and one on general wireless networks. For a k×kk\times k grid network, the proposed LADA algorithm achieves an ϵ\epsilon-averaging time of O(klog(ϵ1))O(k\log(\epsilon^{-1})). Based on this algorithm, in a wireless network with transmission range rr, an ϵ\epsilon-averaging time of O(r1log(ϵ1))O(r^{-1}\log(\epsilon^{-1})) can be attained through a centralized algorithm. Subsequently, we present a fully-distributed LADA algorithm for wireless networks, which utilizes only the direction information of neighbors to construct nonreversible chains. It is shown that this distributed LADA algorithm achieves the same scaling law in averaging time as the centralized scheme. Finally, we propose a cluster-based LADA (C-LADA) algorithm, which, requiring no central coordination, provides the additional benefit of reduced message complexity compared with the distributed LADA algorithm.Comment: 44 pages, 14 figures. Submitted to IEEE Transactions on Information Theor
    corecore