456 research outputs found
On the asymptotic behavior of highly nonlinear hybrid stochastic delay differential equations
In this paper, under a local Lipschitz condition and a monotonicity condition, the problems on the existence and uniqueness theorem as well as the almost surely asymptotic behavior for the global solution of highly nonlinear stochastic differential equations with time-varying delay and Markovian switching are discussed by using the Lyapunov function and some stochastic analysis techniques. Two integral lemmas are firstly established to overcome the difficulty stemming from the coexistence of the stochastic perturbation and the time-varying delay. Then, without any redundant restrictive condition on the time-varying delay, by utilizing the integral inequality, the exponential stability in pth(p ≥ 1)-moment for such equations is investigated. By employing the nonnegative semi-martingale convergence theorem, the almost sure exponential stability is analyzed. Finally, two examples are given to show the usefulness of the results obtained.National Natural Science Foundation of ChinaNatural Science Foundation of Jiangxi Province of ChinaFoundation of Jiangxi Provincial Educations of ChinaMinisterio de Economía y Competitividad (MINECO). EspañaJunta de Andalucí
Scene Graph Lossless Compression with Adaptive Prediction for Objects and Relations
The scene graph is a new data structure describing objects and their pairwise
relationship within image scenes. As the size of scene graph in vision
applications grows, how to losslessly and efficiently store such data on disks
or transmit over the network becomes an inevitable problem. However, the
compression of scene graph is seldom studied before because of the complicated
data structures and distributions. Existing solutions usually involve
general-purpose compressors or graph structure compression methods, which is
weak at reducing redundancy for scene graph data. This paper introduces a new
lossless compression framework with adaptive predictors for joint compression
of objects and relations in scene graph data. The proposed framework consists
of a unified prior extractor and specialized element predictors to adapt for
different data elements. Furthermore, to exploit the context information within
and between graph elements, Graph Context Convolution is proposed to support
different graph context modeling schemes for different graph elements. Finally,
a learned distribution model is devised to predict numerical data under
complicated conditional constraints. Experiments conducted on labeled or
generated scene graphs proves the effectiveness of the proposed framework in
scene graph lossless compression task
A novel control system design for automatic feed drilling operation of the PLC-based oil rig
Aiming at the difficulties in realizing the accurate control due to the nonlinearity of the automatic drilling system of oil drilling rig, a design scheme is proposed by giving a constant drilled-pressure to the rig for fuzzy control. Sampling error with changes in the signal was sent into the fuzzy controller, which turned the signal into a fuzzy volume. Subsequently, a precise volume was obtained accordingly and then added to an actuator for the motor control. According to the MATLAB simulation results, the response could be faster and more stable compared with the traditional control
Multi-feature fusion learning for Alzheimer's disease prediction using EEG signals in resting state
IntroductionDiagnosing Alzheimer's disease (AD) lesions via visual examination of Electroencephalography (EEG) signals poses a considerable challenge. This has prompted the exploration of deep learning techniques, such as Convolutional Neural Networks (CNNs) and Visual Transformers (ViTs), for AD prediction. However, the classification performance of CNN-based methods has often been deemed inadequate. This is primarily attributed to CNNs struggling with extracting meaningful lesion signals from the complex and noisy EEG data.MethodsIn contrast, ViTs have demonstrated proficiency in capturing global signal patterns. In light of these observations, we propose a novel approach to enhance AD risk assessment. Our proposition involves a hybrid architecture, merging the strengths of CNNs and ViTs to compensate for their respective feature extraction limitations. Our proposed Dual-Branch Feature Fusion Network (DBN) leverages both CNN and ViT components to acquire texture features and global semantic information from EEG signals. These elements are pivotal in capturing dynamic electrical signal changes in the cerebral cortex. Additionally, we introduce Spatial Attention (SA) and Channel Attention (CA) blocks within the network architecture. These attention mechanisms bolster the model's capacity to discern abnormal EEG signal patterns from the amalgamated features. To make well-informed predictions, we employ a two-factor decision-making mechanism. Specifically, we conduct correlation analysis on predicted EEG signals from the same subject to establish consistency.ResultsThis is then combined with results from the Clinical Neuropsychological Scale (MMSE) assessment to comprehensively evaluate the subject's susceptibility to AD. Our experimental validation on the publicly available OpenNeuro database underscores the efficacy of our approach. Notably, our proposed method attains an impressive 80.23% classification accuracy in distinguishing between AD, Frontotemporal dementia (FTD), and Normal Control (NC) subjects.DiscussionThis outcome outperforms prevailing state-of-the-art methodologies in EEG-based AD prediction. Furthermore, our methodology enables the visualization of salient regions within pathological images, providing invaluable insights for interpreting and analyzing AD predictions
- …