3 research outputs found

    Stable isotope composition alteration produced by the aragonite-to-calcite transformation in speleothems and implications for paleoclimate reconstructions

    No full text
    Aragonite, a mineralogical constituent of speleothems in cave environments, is unstable and susceptible to inversion to calcite, a diagenetic process that involves changes in the mineralogy, texture and geochemistry of speleothems. However, the exact alterations of stable isotope compositions during such diagenesis have not been fully investigated. In this study, two aragonite stalagmites (SN3 and SN15) from the Shennong Cave, southeast China, were found partially inverted to calcite, as determined by X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses, and thin-section inspections under microscope. The fiber relics and textural ghosts of aragonite preserved in coarse and equant mosaic calcite crystals clearly indicate that the calcite in these two stalagmites were inverted from aragonite. The stable isotope compositions (delta C-13 and delta O-18, given in per mil versus VPDB standard) of primary aragonite and secondary calcite were analyzed and compared, along both growth layers and growth axes. The results show that, along growth layers, differences of delta C-13 values between aragonite and calcite are negligible (0.1 parts per thousand-0.2%.), whereas differences of delta O-18 values between aragonite and calcite are significant (0.63 parts per thousand-0.87%0). Comparisons along growth axes show similar results: i.e., differences of delta 13C values are negligible (0.06% +/- 0.22%.) whereas differences of delta O-18 values are significant (0.85 parts per thousand +/- 0.29%.). Most likely, the aragonite in SN3 and SN15 were internally inverted by interactions of trace calcite crystallites and pore water within intercrystalline pore spaces, by a dissolution-reprecipitation process occurring in trapped pore water. In the case of the inversion of aragonite to calcite in speleothems, such as that observed in SN3 and SN15, the delta 13C values could be used in paleoclimate and paleoenvironment reconstructions because they are inherited from those of primary aragonite. Although the delta O-18 values might be cross-calibrated to those of primary aragonite if the aragonite-calcite fractionation offset is known (e.g., 0.85 parts per thousand +/- 0.29%0 in this study), however, the delta O-18 values of secondary calcite should be used with caution in such reconstructions as the delta O-18 offset value is not consistently invariable.</p

    The Holocene Indian monsoon variability over the southern Tibetan Plateau and its teleconnections

    No full text
    A high-resolution stalagmite oxygen isotope record from Tianmen Cave, located in the south central Tibetan Plateau, characterizes detailed climatic variations between 8.7 and 4.3 ka BP on centennial and decadal time scales, with a temporal resolution of 3 to 7 years. The Tianmen record is in good agreement with speleothem records from Asian monsoon regions (i.e., Dongge Cave, Dykoski et al., 2005; Wang et al., 2005; Qunf Cave, Fleitmann et al., 2003), upwelling records from the Arabian Sea (Gupta et al., 2003, 2005) and peat bog records from southeast Tibetan Plateau (Hong et al., 2003), indicating that the Indian summer monsoon (ISM) gradually weakened as Northern Hemisphere summer insolation declined during the early-mid Holocene and that ISM intensity, rather than temperature, dominates the precipitation delta O-18 on centennial to decadal time scales in the southern TP. On centennial to decadal time scales, the detrended Tianmen record correlates well with the Greenland ice core record, further confirming the mechanistic connection between the ISM and high northern latitude temperature changes. Meanwhile, the Tianmen record bears significant solar activity cycles, suggesting that the solar output changes may affect the variability of the ISM and likely the position of the Intertropical Convergence Zone (ITCZ) as well. Moreover, due to joint effects of changes in monsoon precipitation, moisture source and temperature, the Tianmen delta O-18 record shows much larger amplitude changes than speleothem delta O-18 records from low-elevation Asian Monsoon regions, which is similar to the previously reported Marine Isotope Stage (MIS) 5 record (Cai et al., 20W), suggesting heightened sensitivity of precipitation isotope composition to climate changes over the high-elevation regions and further demonstrating that the stable isotope lapse rate may change under different climatic conditions.</p

    A Chinese cave links climatechange, social impacts, and humanadaptation over the last 500 years

    No full text
    The collapse of some pre-historical and historical cultures, including Chinese dynasties were presumably linked to widespread droughts, on the basis of synchronicities of societal crises and proxy-based climate events. Here, we present a comparison of ancient inscriptions in Dayu Cave from Qinling Mountains, central China, which described accurate times and detailed impacts of seven drought events during the period of 1520&ndash;1920 CE, with high-resolution speleothem records from the same cave. The comparable results provide unique and robust tests on relationships among speleothem &delta;18O changes, drought events, and societal unrest. With direct historical evidences, our results suggest that droughts and even modest events interrupting otherwise wet intervals can cause serious social crises. Modeling results of speleothem &delta;18O series suggest that future precipitation in central China may be below the average of the past 500 years. As Qinling Mountain is the main recharge area of two large water transfer projects and habitats of many endangered species, it is imperative to explore an adaptive strategy for the decline in precipitation and/or drought events.</p
    corecore