2,668 research outputs found

    Spin transport properties of a quantum dot coupled to ferromagnetic leads with noncollinear magnetizations

    Full text link
    A correct general formula for the spin current through an interacting quantum dot coupled to ferromagnetic leads with magnetization at an arbitrary angle θ\theta is derived within the framework of the Keldysh formalism. Under asymmetric conditions, the spin current component J_{z} may change sign for 0<θ<π0<\theta<\pi. It is shown that the spin current and spin tunneling magnetoresistance exhibit different angle dependence in the free and Coulomb blockade regimes. In the latter case, the competition of spin precession and the spin-valve effect could lead to an anomaly in the angle dependence of the spin current.Comment: 7 pages, 4 figures; some parts of the text has been revised in this version accepted by J. Phys.: Condens. Matte

    Valence bond spin liquid state in two-dimensional frustrated spin-1/2 Heisenberg antiferromagnets

    Full text link
    Fermionic valence bond approach in terms of SU(4) representation is proposed to describe the J1−J2J_{1}-J_{2} frustrated Heisenberg antiferromagnetic (AF) model on a {\it bipartite} square lattice. A uniform mean field solution without breaking the translational and rotational symmetries describes a valence bond spin liquid state, interpolating the two different AF ordered states in the large J1J_{1} and large J2J_{2} limits, respectively. This novel spin liquid state is gapless with the vanishing density of states at the Fermi nodal points. Moreover, a sharp resonance peak in the dynamic structure factor is predicted for momenta q=(0,0){\bf q}=(0,0) and (π,π)(\pi ,\pi) in the strongly frustrated limit J2/J1∼1/2J_{2}/J_{1}\sim 1/2, which can be checked by neutron scattering experiment.Comment: Revtex file, 4 pages, 4 figure

    PRED(TAP): a system for prediction of peptide binding to the human transporter associated with antigen processing

    Get PDF
    BACKGROUND: The transporter associated with antigen processing (TAP) is a critical component of the major histocompatibility complex (MHC) class I antigen processing and presentation pathway. TAP transports antigenic peptides into the endoplasmic reticulum where it loads them into the binding groove of MHC class I molecules. Because peptides must first be transported by TAP in order to be presented on MHC class I, TAP binding preferences should impact significantly on T-cell epitope selection. DESCRIPTION: PRED(TAP )is a computational system that predicts peptide binding to human TAP. It uses artificial neural networks and hidden Markov models as predictive engines. Extensive testing was performed to valid the prediction models. The results showed that PRED(TAP )was both sensitive and specific and had good predictive ability (area under the receiver operating characteristic curve Aroc>0.85). CONCLUSION: PRED(TAP )can be integrated with prediction systems for MHC class I binding peptides for improved performance of in silico prediction of T-cell epitopes. PRED(TAP )is available for public use at [1]

    State estimation from pair of conjugate qudits

    Full text link
    We show that, for NN parallel input states, an anti-linear map with respect to a specific basis is essentially a classical operator. We also consider the information contained in phase-conjugate pairs ∣ϕ>∣ϕ∗>|\phi > |\phi^*>, and prove that there is more information about a quantum state encoded in phase-conjugate pairs than in parallel pairs.Comment: 4 pages, 1 tabl

    Microembossing of ultrafine grained Al: microstructural analysis and finite element modelling

    No full text
    Ultra fine grained (UFG) Al-1050 processed by equal channel angular pressing (ECAP) and UFG Al-Mg-Cu-Mn processed by high pressure torsion (HPT) were embossed at both room temperature and 300 °C, with the aim of producing micro-channels. The behaviour of Al alloys during the embossing process was analysed using finite element (FE) modelling. The cold embossing of both Al alloys is characterised by a partial pattern transfer, a large embossing force, channels with oblique sidewalls and a large failure rate of the mould. The hot embossing is characterised by straight channel sidewalls, fully transferred patterns and reduced loads which decrease the failure rate of the mould. Hot embossing of UFG Al-Mg-Cu-Mn produced by HPT shows a potential of fabrication of microelectromechanical system (MEMS) components with micro channels

    Optimal entanglement witnesses based on local orthogonal observables

    Full text link
    We show that the entanglement witnesses based on local orthogonal observables which are introduced in [S. Yu and N.-L. Liu, Phys. Rev. Lett. 95, 150504 (2005)] and [O. G\"uhne, M. Mechler, G. T\'oth and P. Adam, Phys. Rev. A 74, 010301 (2006)] in linear and nonlinear forms can be optimized, respectively. As applications, we calculate the optimal nonlinear witnesses of pure bipartite states and show a lower bound on the I-concurrence of bipartite higher dimensional systems with our method.Comment: 6 pages, 1 figure; minor changes, references adde

    Improving Convection Parameterization Using ARM Observations and NCAR Community Atmosphere Model

    Get PDF
    Highlight of Accomplishments: We made significant contribution to the ASR program in this funding cycle by better representing convective processes in GCMs based on knowledge gained from analysis of ARM/ASR observations. In addition, our work led to a much improved understanding of the interaction among aerosol, convection, clouds and climate in GCMs

    Poynting vector, energy density and energy velocity in anomalous dispersion medium

    Get PDF
    The Poynting vector, energy density and energy velocity of light pulses propagating in anomalous dispersion medium (used in WKD-like experiments) are calculated. Results show that a negative energy density in the medium propagates along opposite of incident direction with such a velocity similar to the negative group velocity while the direction of the Poynting vector is positive. In other words, one might say that a positive energy density in the medium would propagate along the positive direction with a speed having approximately the absolute valueof the group velocity. We further point out that neither energy velocity nor group velocity is a good concept to describe the propagation process of light pulse inside the medium in WKD experiment owing to the strong accumulation and dissipation effects.Comment: 6 page

    Quantum phase transition of Bose-Einstein condensates on a ring nonlinear lattice

    Full text link
    We study the phase transitions in a one dimensional Bose-Einstein condensate on a ring whose atomic scattering length is modulated periodically along the ring. By using a modified Bogoliubov method to treat such a nonlinear lattice in the mean field approximation, we find that the phase transitions are of different orders when the modulation period is 2 and greater than 2. We further perform a full quantum mechanical treatment based on the time-evolving block decimation algorithm which confirms the mean field results and reveals interesting quantum behavior of the system. Our studies yield important knowledge of competing mechanisms behind the phase transitions and the quantum nature of this system.Comment: 12 pages, 7 figure
    • …
    corecore