122 research outputs found

    Kdm2b promotes induced pluripotent stem cell generation by facilitating gene activation early in reprogramming

    Get PDF
    Transcription-factor-directed reprogramming from somatic cells to induced pluripotent stem cells (iPSCs) is by nature an epigenetic process of cell fate change. Previous studies have demonstrated that this inefficient process can be facilitated by the inclusion of additional factors. To gain insight into the reprogramming mechanism, we aimed to identify epigenetic enzymes capable of promoting iPSC generation. Here we show that Kdm2b, a histone H3 Lys 36 dimethyl (H3K36me2)-specific demethylase, has the capacity to promote iPSC generation. This capacity depends on its demethylase and DNA-binding activities, but is largely independent of its role in antagonizing senescence. Kdm2b functions at the beginning of the reprogramming process and enhances activation of early responsive genes in reprogramming. Kdm2b contributes to gene activation by binding to and demethylating the gene promoters. Our studies not only identify an important epigenetic factor for iPSC generation, but also reveal the molecular mechanism underlying how Kdm2b contributes to reprogramming

    Unified framework of the microscopic Landau-Lifshitz-Gilbert equation and its application to Skyrmion dynamics

    Full text link
    The Landau-Lifshitz-Gilbert (LLG) equation is widely used to describe magnetization dynamics. We develop a unified framework of the microscopic LLG equation based on the nonequilibrium Green's function formalism. We present a unified treatment for expressing the microscopic LLG equation in several limiting cases, including the adiabatic, inertial, and nonadiabatic limits with respect to the precession frequency for a magnetization with fixed magnitude, as well as the spatial adiabatic limit for the magnetization with slow variation in both its magnitude and direction. The coefficients of those terms in the microscopic LLG equation are explicitly expressed in terms of nonequilibrium Green's functions. As a concrete example, this microscopic theory is applied to simulate the dynamics of a magnetic Skyrmion driven by quantum parametric pumping. Our work provides a practical formalism of the microscopic LLG equation for exploring magnetization dynamics

    Generation of Insulin-secreting Islet-like Clusters from Human Skin Fibroblasts

    Get PDF
    Increasing evidence suggests that islet cell transplantation for patients with type I diabetes holds great promise for achieving insulin independence. However, the extreme shortage of matched organ donors and the necessity for chronic immunosuppression has made it impossible for this treatment to be used for the general diabetic population. Recent success in generating insulin-secreting islet-like cells from human embryonic stem (ES) cells, in combination with the success in deriving human ES cell-like induced pluripotent stem (iPS) cells from human fibroblasts by defined factors, have raised the possibility that patient-specific insulin-secreting islet-like cells might be derived from somatic cells through cell fate reprogramming using defined factors. Here we confirm that human ES-like iPS cells can be derived from human skin cells by retroviral expression of OCT4, SOX2, c-MYC, and KLF4. Importantly, using a serum-free protocol, we successfully generated insulin-producing islet-like clusters (ILCs) from the iPS cells under feeder-free conditions. We demonstrate that, like human ES cells, skin fibroblast-derived iPS cells have the potential to be differentiated into islet-like clusters through definitive and pancreatic endoderm. The iPS-derived ILCs not only contain C-peptide-positive and glucagon-positive cells but also release C-peptide upon glucose stimulation. Thus, our study provides evidence that insulin-secreting ILCs can be generated from skin fi

    Adaptive SPP–CNN–LSTM–ATT wind farm cluster short-term power prediction model based on transitional weather classification

    Get PDF
    With the expansion of the scale of wind power integration, the safe operation of the grid is challenged. At present, the research mainly focuses on the prediction of a single wind farm, lacking coordinated control of the cluster, and there is a large prediction error in transitional weather. In view of the above problems, this study proposes an adaptive wind farm cluster prediction model based on transitional weather classification, aiming to improve the prediction accuracy of the cluster under transitional weather conditions. First, the reference wind farm is selected, and then the improved snake algorithm is used to optimize the extreme gradient boosting tree (CBAMSO-XGB) to divide the transitional weather, and the sensitive meteorological factors under typical transitional weather conditions are optimized. A convolutional neural network (CNN) with a multi-layer spatial pyramid pooling (SPP) structure is utilized to extract variable dimensional features. Finally, the attention (ATT) mechanism is used to redistribute the weight of the long and short term memory (LSTM) network output to obtain the predicted value, and the cluster wind power prediction value is obtained by upscaling it. The results show that the classification accuracy of the CBAMSO-XGB algorithm in the transitional weather of the two test periods is 99.5833% and 95.4167%, respectively, which is higher than the snake optimization (SO) before the improvement and the other two algorithms; compared to the CNN–LSTM model, the mean absolute error (MAE) of the adaptive prediction model is decreased by approximately 42.49%–72.91% under various transitional weather conditions. The relative root mean square error (RMSE) of the cluster is lower than that of each reference wind farm and the prediction method without upscaling. The results show that the method proposed in this paper effectively improves the prediction accuracy of wind farm clusters during transitional weather

    A Nanoscale Shape Memory Oxide

    Full text link
    Stimulus-responsive shape memory materials have attracted tremendous research interests recently, with much effort focused on improving their mechanical actuation. Driven by the needs of nanoelectromechnical devices, materials with large mechanical strain particularly at nanoscale are therefore desired. Here we report on the discovery of a large shape memory effect in BiFeO3 at the nanoscale. A maximum strain of up to ~14% and a large volumetric work density can be achieved in association with a martensitic-like phase transformation. With a single step, control of the phase transformation by thermal activation or electric field has been reversibly achieved without the assistance of external recovery stress. Although aspects such as hysteresis, micro-cracking etc. have to be taken into consideration for real devices, the large shape memory effect in this oxide surpasses most alloys and therefore demonstrates itself as an extraordinary material for potential use in state-of-art nano-systems.Comment: Accepted by Nature Communication

    The expression of chondrogenesis-related and arthritis-related genes in human ONFH cartilage with different Ficat stages

    Get PDF
    Background It has been well known that the degeneration of hip articular cartilage with osteonecrosis of the femoral head (ONFH) increases the instability of hip and accelerates the development process of ONFH. A better understanding of the expression of chondrogenesis-related and arthritis-related genes of cartilage along with the progression of ONFH seems to be essential for further insight into the molecular mechanisms of ONFH pathogenesis. Methods We analyzed the differentially expressed gene profile (GSE74089) of human hip articular cartilage with ONFH. The functions and pathway enrichments of differentially expressed genes (DEGs) were analyzed via GO and KEGG analysis. The expression of six selected critical chondrogenesis-related and four arthritis-related genes in eight human hip articular cartilage with femoral neck fracture (FNF) and 26 human hip articular cartilage with different stages ONFH (6 cases of Ficat stage II, 10 cases of Ficat stage III and 10 cases of Ficat stage IV) were detected. Results A total of 2,174 DEGs, including 1,482 up-regulated and 692 down-regulated ones, were obtained in the ONFH cartilage specimens compared to the control group. The GO and KEGG enrichment analysis indicated that the function of these DEGs mainly enriched in extracellular matrix, angiogenesis, antigen processing and presentation. The results showed a significant stepwise up-expression of chondrogenesis-related genes, including MMP13, ASPN, COL1A1, OGN, COL2A1 and BMP2, along with the progression of ONFH. The arthritis-related genes IL1β, IL6 and TNFα were only found up-expressed in Ficat IV stage which indicated that the arthritis-related molecular changes were not significant in the progression of ONFH before Ficat III stage. However, the arthritis-related gene PTGS2 was significant stepwise up-expression along with the progression of ONFH which makes it to be a sensitive arthritis-related biomarker of ONFH. Conclusion Expression changes of six chondrogenesis-related and four arthritis-related genes were found in hip articular cartilage specimens with different ONFH Ficat stages. These findings are expected to a get a further insight into the molecular mechanisms of ONFH progression

    Highly Stable Garnet Fe2Mo3O12 Cathode Boosts the Lithium–Air Battery Performance Featuring a Polyhedral Framework and Cationic Vacancy Concentrated Surface

    Get PDF
    Lithium–air batteries (LABs), owing to their ultrahigh theoretical energy density, are recognized as one of the next-generation energy storage techniques. However, it remains a tricky problem to find highly active cathode catalyst operating within ambient air. In this contribution, a highly active Fe2Mo3O12 (FeMoO) garnet cathode catalyst for LABs is reported. The experimental and theoretical analysis demonstrate that the highly stable polyhedral framework, composed of FeO octahedrons and MO tetrahedrons, provides a highly effective air catalytic activity and long-term stability, and meanwhile keeps good structural stability. The FeMoO electrode delivers a cycle life of over 1800 h by applying a simple half-sealed condition in ambient air. It is found that surface-rich Fe vacancy can act as an O2 pump to accelerate the catalytic reaction. Furthermore, the FeMoO catalyst exhibits a superior catalytic capability for the decomposition of Li2CO3. H2O in the air can be regarded as the main contribution to the anode corrosion and the deterioration of LAB cells could be attributed to the formation of LiOH·H2O at the end of cycling. The present work provides in-depth insights to understand the catalytic mechanism in air and constitutes a conceptual breakthrough in catalyst design for efficient cell structure in practical LABs

    Experimental Study of the Source of CO Anomalies in Mines Based on Microscopic Changes

    No full text
    The phenomenon of abnormal CO emergence occurred in a working face of Tangshan mine, and the CO source was analyzed from the two perspectives of CO detection method optimization and microstructure changes in the low-temperature environment of the coal body. Then, the critical index system was optimized. The CO identification tube test results and gas chromatograph test results are combined to derive a fitting formula, and the CO identification tube test results are used as the independent variable to obtain the gas chromatograph test results, which can effectively eliminate the error of small CO identification tube test results. The analysis of raw coal and coal samples heated by water bath at 30 °C, 40 °C, and 50 °C was carried out using low temperature liquid nitrogen adsorption and thermogravimetric and infrared spectroscopy experiments. It was found that the pore structure of the coal body developed as the temperature increased; the oxidation reaction occurred in the low-temperature state when heat was absorbed to produce CO. The thermal decomposition of carbonyl group was found to be the main source of CO. Finally, the index of spontaneous combustion of coal is optimized according to the temperature, and the index systems represented by O2/(CO2+CO), CH4 and CO2/CO were determined from 30~80 °C, 90~180 °C and 18~240 °C, respectively
    • …
    corecore