9,893 research outputs found

    Doppler effect of gamma-ray bursts in the fireball framework

    Full text link
    The influence of the Doppler effect in the fireball framework on the spectrum of gamma-ray bursts is investigated. The study shows that the shape of the expected spectrum of an expanding fireball remains almost the same as that of the corresponding rest frame spectrum for constant radiations of the bremsstrahlung, Comptonized, and synchrotron mechanisms as well as for that of the GRB model. The peak flux spectrum and the peak frequency are obviously correlated. When the value of the Lorentz factor becomes 10 times larger, the flux of fireballs would be several orders of magnitude larger. The expansion speed of fireballs is a fundamental factor of the enhancement of the flux of gamma-ray bursts.Comment: 19 pages, 13 figure

    Dependence of Temporal Properties on Energy in Long-Lag, Wide-Pulse Gamma-Ray Bursts

    Full text link
    We employed a sample compiled by Norris et al. (2005, ApJ, 625, 324) to study the dependence of the pulse temporal properties on energy in long-lag, wide-pulse gamma-ray bursts. Our analysis shows that the pulse peak time, rise time scale and decay time scale are power law functions of energy, which is a preliminary report on the relationships between the three quantities and energy. The power law indexes associated with the pulse width, rise time scale and decay time scale are correlated and the correlation between the indexes associated with the pulse width and the decay time scale is more obvious. In addition, we have found that the pulse peak lag is strongly correlated with the CCF lag, but the centroid lag is less correlated with the peak lag and CCF lag. Based on these results and some previous investigations, we tend to believe that all energy-dependent pulse temporal properties may come from the joint contribution of both the hydrodynamic processes of the outflows and the curvature effect, where the energy-dependent spectral lag may be mainly dominated by the dynamic process and the energy-dependent pulse width may be mainly determined by the curvature effect.Comment: 20 pages, 7 figures, added references, matched to published version, accepted for publication in PAS

    Crossing w=1w=-1 by a single scalar field coupling with matter and the observational constraints

    Full text link
    Motivated by Yang-Mills dark energy model, we propose a new model by introducing a logarithmic correction. we find that this model can avoid the coincidence problem naturally and gives an equation of state ww smoothly crossing -1 if an interaction between dark energy and dark matter exists. It has a stable tracker solution as well. To confront with observations based on the combined data of SNIa, BAO, CMB and Hubble parameter, we obtain the best fit values of the parameters with 1σ,2σ,3σ1\sigma, 2\sigma, 3\sigma errors for the noncoupled model: Ωm=0.276±0.0080.0150.022+0.016+0.024\Omega_m=0.276\pm0.008^{+0.016+0.024}_{-0.015-0.022}, h=0.699±0.003±0.006±0.008h=0.699\pm0.003\pm0.006\pm0.008, and for the coupled model with a decaying rate γ=0.2\gamma=0.2: Ωm=0.291±0.0040.0070.011+0.008+0.012\Omega_m=0.291\pm0.004^{+0.008+0.012}_{-0.007-0.011}, h=0.701±0.002±0.005±0.007h=0.701\pm0.002\pm0.005\pm0.007. In particular, it is found that the non-coupled model has a dynamic evolution almost undistinguishable to Λ\LambdaCDM at the late-time Universe.Comment: 12 pages, 3 figures, the published versio

    Broadband lightcurve characteristics of GRBs 980425 and 060218 and comparison with long-lag, wide-pulse GRBs

    Full text link
    It has been recently argued that low-luminosity gamma-ray bursts (LL-GRBs) are likely a unique GRB population. Here, we present systematic analysis of the lightcurve characteristics from X-ray to gamma-ray energy bands for the two prototypical LL-GRBs 980425 and 060218. It is found that both the pulse width (ww) and the ratio of the rising width to the decaying width (r/dr/d) of theses two bursts are energy-dependent over a broad energy band. There exists a significant trend that the pulses tend to be narrower and more symmetry with respect to the higher energy bands for the two events. Both the X-rays and the gamma-rays follow the same wEw - E and r/dEr/d - E relations. These facts may indicate that the X-ray emission tracks the gamma-ray emission and both are likely to be originated from the same physical mechanism. Their light curves show significant spectral lags. We calculate the three types of lags with the pulse peaking time (tpeakt_{peak}), the pulse centroid time (tcent_{cen}), and the cross-correlation function (CCF). The derived tpeakt_{peak} and tcent_{cen} are a power-law function of energy. The lag calculated by CCF is strongly correlated with that derived from tpeakt_{peak}. But the lag derived from tcent_{cen} is less correlated with that derived from tpeakt_{peak} and CCF. The energy dependence of the lags is shallower at higher energy bands. These characteristics are well consistent with that observed in typical long-lag, wide-pulse GRBs, suggesting that GRBs 980425 and 060218 may share the similar radiation physics with them.Comment: 26 pages, 10 figures, 3 tables, accepted for publication in Ap
    corecore