3 research outputs found
Chickens First\ud \ud Speciation by “Hopeful Monsters” in Fraternal Supertwins\ud
The idea of “hopeful monster” was proposed by Goldschmidt who envisioned that speciation could occur instantaneously via major chromosomal rearrangement in a one-step process; but he could not unravel how similar individual in the opposite sex to appear on the same time and location to generate next generation. This paper provides the answer for the challenge. \ud
In this paper, a model of speciation in animals is discussed in detail. Only four steps are needed to generate a new species in sexual animals: fraternal twin zygotes, similar gross mutation on the zygotes, self-splitting of mutated zygotes into two groups of identical zygotes of both sexes, development of zygotes with birth of babies, and inbreeding when they mature. The outcome of these steps is generation of new species with chromosomal homozygosity. Viviparous animals (living young not eggs are produced) are used to explain the model. With slight modifications, other asexual organisms could be accommodated. \ud
As the model provides the simplest explanation for speciation in all sexual animals, which plausibly explains many puzzles in biology; such as chicken egg, Cambrian explosion, appearance of new organs, etc. The author presents a few predictions that can be falsified. \ud
This model needs only one assumption and it is consistent with many well-known observations. \u
LDHs and their Derivatives for Electrochemical Energy Storage and Conversion Systems: Design, Insights and Applications
Abstract Electrochemical energy storage and conversion systems (EESCSs), including batteries, supercapacitors, fuel cells, and water electrolysis technologies, enabling the direct conversion between chemical and electrical energies. They are key to the flexible storage and utilization of renewable energy and play an important role in future energy technologies. The physical and chemical properties of electrode materials significantly influence the performance of EESCSs, necessitating the development of materials with both high cost‐effectiveness and superior electrochemical storage and catalytic capabilities. Layered double hydroxides (LDHs), due to their unique properties as high surface area, evenly distributed active sites, and tunable compositions, makes themselves and the derivatives have become focal points in the EESCSs. This review summarizes recent advances of LDH and their derivates for diverse EESCSs applications, aims to elucidate the modification strategies of LDH materials and provide valuable insights for exploring LDH‐derived materials in various electrochemical devices, offering interdisciplinary perspectives for the rational design of LDH‐based materials