200 research outputs found

    More than Vanilla Fusion: a Simple, Decoupling-free, Attention Module for Multimodal Fusion Based on Signal Theory

    Full text link
    The vanilla fusion methods still dominate a large percentage of mainstream audio-visual tasks. However, the effectiveness of vanilla fusion from a theoretical perspective is still worth discussing. Thus, this paper reconsiders the signal fused in the multimodal case from a bionics perspective and proposes a simple, plug-and-play, attention module for vanilla fusion based on fundamental signal theory and uncertainty theory. In addition, previous work on multimodal dynamic gradient modulation still relies on decoupling the modalities. So, a decoupling-free gradient modulation scheme has been designed in conjunction with the aforementioned attention module, which has various advantages over the decoupled one. Experiment results show that just a few lines of code can achieve up to 2.0% performance improvements to several multimodal classification methods. Finally, quantitative evaluation of other fusion tasks reveals the potential for additional application scenarios

    Gas-Purged Headspace Liquid Phase Microextraction System for Determination of Volatile and Semivolatile Analytes

    Get PDF
    In order to achieve rapid, automatic, and efficient extraction for trace chemicals from samples, a system of gas-purged headspace liquid phase microextraction (GP-HS-LPME) has been researched and developed based on the original HS-LPME technique. In this system, semiconductor condenser and heater, whose refrigerating and heating temperatures were controlled by microcontroller, were designed to cool the extraction solvent and to heat the sample, respectively. Besides, inert gas, whose gas flow rate was adjusted by mass flow controller, was continuously introduced into and discharged from the system. Under optimized parameters, extraction experiments were performed, respectively, using GP-HS-LPME system and original HS-LPME technique for enriching volatile and semivolatile target compounds from the same kind of sample of 15 PAHs standard mixture. GC-MS analysis results for the two experiments indicated that a higher enrichment factor was obtained from GP-HS-LPME. The enrichment results demonstrate that GP-HS-LPME system is potential in determination of volatile and semivolatile analytes from various kinds of samples
    corecore