21 research outputs found

    Efficient synthesis of Vitamin D3 in a 3D ultraviolet photochemical microreactor fabricated using an ultrafast laser

    Full text link
    Large-scale, high-precision, and high-transparency microchannels hold great potential for developing high-performance continuous-flow photochemical reactions. We demonstrate ultrafast laser-enabled fabrication of 3D microchannel reactors in ultraviolet (UV) grade fused silica which exhibit high transparency under the illumination of UV light sources of wavelengths well below 300 nm with excellent mixing efficiency. With the fabricated glass microchannel reactors, we demonstrate continuous-flow UV photochemical synthesis of vitamin D3 with low power consumption of the UV light sources

    Rumen Degradability and Post-ruminal Digestion of Dry Matter, Nitrogen and Amino Acids of Three Protein Supplements

    Get PDF
    This study evaluated the in situ ruminal degradability, and subsequent small intestinal digestibility (SID) of dry matter, crude protein (CP), and amino acids (AA) of cottonseed meal (CSM), sunflower seed meal (SFSM) and distillers dried grains with solubles (DDGS) by using the modified three-step in vitro procedure. The ruminal degradability and subsequent SID of AA in rumen-undegradable protein (RUP-AA) varied among three protein supplements. The result show that the effective degradability of DM for SFSM, CSM, and DDGS was 60.8%, 56.4%, and 41.0% and their ruminal fermentable organic matter was 60.0%, 55.9%, and 39.9%, respectively. The ruminal degradable protein (RDP) content in CP for SFSM, CSM, and DDGS was 68.3%, 39.0%, and 32.9%, respectively, at the ruminal solid passage rate of 1.84%/h. The SFSM is a good source of RDP for rumen micro-organisms; however, the SID of RUP of SFSM was lower. The DDGS and CSM are good sources of RUP for lambs to digest in the small intestine to complement ruminal microbial AA of growing lambs. Individual RUP-AA from each protein source was selectively removed by the rumen micro-organisms, especially for Trp, Arg, His, and Lys (p<0.01). The SID of individual RUP-AA was different within specific RUP origin (p<0.01). Limiting amino acid was Leu for RUP of CSM and Lys for both RUP of SFSM and DDGS, respectively. Therefore, different protein supplements with specific limitations should be selected and combined carefully in growing lambs ration to optimize AA balance

    Study on the Performance of Phase-Change Self-Regulating Permeable Asphalt Pavement

    No full text
    Under low-temperature conditions in winter, asphalt pavement is prone to cracking, icing and other distresses, which affect its safety and comfort. Therefore, by incorporating phase-change materials into asphalt and conducting relevant performance studies, the aim is to alleviate low-temperature distress and regulate road surface temperature and expand the application of phase-change materials in asphalt pavement. We mixed the selected phase-change materials with different dosages into the matrix asphalt to prepare phase-change temperature-regulating asphalt and tested the four basic indicators: road performance, latent heat characteristics, temperature-regulating performance, and rheological properties of phase-change asphalt and its mixture. The research results indicate that with the increase in phase-change material content, the penetration, softening point, ductility, and dynamic viscosity of phase-change high-viscosity asphalt gradually increase. Under the constant temperature test conditions of −2.5 °C and −5 °C, the surface icing speed of asphalt binder specimens mixed with phase-change materials is slower than that of specimens without phase-change materials. Adding phase-change materials can improve the high-temperature and low-temperature PG grading of high-viscosity asphalt, effectively improving its high-temperature rutting resistance and low-temperature cracking performance. According to the temperature regulation test results, phase-change temperature-regulating asphalt has a certain regulating effect on temperature under low-temperature conditions, which can slow down the cooling rate of asphalt, reduce the thermal conductivity of permeable asphalt mixture by more than 50%, increase the temperature regulation rate by more than 30%, and improve the ice-melting and snow-melting ability by more than 20%. Phase-change materials have almost no effect on the porosity of permeable asphalt mixtures and can effectively improve the water stability, low-temperature crack resistance, and antiflying performance of permeable asphalt mixtures. Their Marshall stability and rutting stability decrease, but still meet the requirements of the specifications. Applying phase-change materials to permeable asphalt pavement can automatically adjust the temperature of the pavement, reduce the cooling rate of the asphalt pavement during cooling, alleviate the problem of snow and ice accumulation on the asphalt pavement in winter, and thereby improve the performance of permeable asphalt pavement against freeze–thaw cycles

    High-Throughput Continuous-Flow Separation in a Micro Free-Flow Electrophoresis Glass Chip Based on Laser Microfabrication

    No full text
    Micro free-flow electrophoresis (&mu;FFE) provides a rapid and straightforward route for the high-performance online separation and purification of targeted liquid samples in a mild manner. However, the facile fabrication of a &mu;FFE device with high throughput and high stability remains a challenge due to the technical barriers of electrode integration and structural design for the removal of bubbles for conventional methods. To address this, the design and fabrication of a high-throughput &mu;FFE chip are proposed using laser-assisted chemical etching of glass followed by electrode integration and subsequent low-temperature bonding. The careful design of the height ratio of the separation chamber and electrode channels combined with a high flow rate of buffer solution allows the efficient removal of electrolysis-generated bubbles along the deep electrode channels during continuous-flow separation. The introduction of microchannel arrays further enhances the stability of on-chip high-throughput separation. As a proof-of-concept, high-performance purification of fluorescein sodium solution with a separation purity of ~97.9% at a voltage of 250 V from the mixture sample solution of fluorescein sodium and rhodamine 6G solution is demonstrated

    Manufacture of Three-Dimensional Optofluidic Spot-Size Converters in Fused Silica Using Hybrid Laser Microfabrication

    No full text
    We propose a hybrid laser microfabrication approach for the manufacture of three-dimensional (3D) optofluidic spot-size converters in fused silica glass by a combination of femtosecond (fs) laser microfabrication and carbon dioxide laser irradiation. Spatially shaped fs laser-assisted chemical etching was first performed to form 3D hollow microchannels in glass, which were composed of embedded straight channels, tapered channels, and vertical channels connected to the glass surface. Then, carbon dioxide laser-induced thermal reflow was carried out for the internal polishing of the whole microchannels and sealing parts of the vertical channels. Finally, 3D optofluidic spot-size converters (SSC) were formed by filling a liquid-core waveguide solution into laser-polished microchannels. With a fabricated SSC structure, the mode spot size of the optofluidic waveguide was expanded from ~8 μm to ~23 μm with a conversion efficiency of ~84.1%. Further measurement of the waveguide-to-waveguide coupling devices in the glass showed that the total insertion loss of two symmetric SSC structures through two ~50 μm-diameter coupling ports was ~6.73 dB at 1310 nm, which was only about half that of non-SSC structures with diameters of ~9 μm at the same coupling distance. The proposed approach holds great potential for developing novel 3D fluid-based photonic devices for mode conversion, optical manipulation, and lab-on-a-chip sensing

    3D large-scale fused silica microfluidic chips enabled by hybrid laser microfabrication for continuous-flow UV photochemical synthesis

    Full text link
    We demonstrate a hybrid laser microfabrication approach, which combines the technical merits of ultrafast laser-assisted chemical etching and carbon dioxide laser-induced in-situ melting, for centimeter-scale and bonding-free fabrication of 3D complex hollow microstructures in fused silica glass. With the developed approach, large-scale fused silica microfluidic chips with integrated 3D cascaded micromixing units can be reliably manufactured. High-performance on-chip mixing and continuous-flow photochemical synthesis under UV LEDs irradiation at ~280 nm were demonstrated using the manufactured chip, indicating a powerful capability for versatile fabrication of highly transparent all-glass microfluidic reactors for on-chip photochemical synthesis
    corecore