1,836 research outputs found
Maiter: An Asynchronous Graph Processing Framework for Delta-based Accumulative Iterative Computation
Myriad of graph-based algorithms in machine learning and data mining require
parsing relational data iteratively. These algorithms are implemented in a
large-scale distributed environment in order to scale to massive data sets. To
accelerate these large-scale graph-based iterative computations, we propose
delta-based accumulative iterative computation (DAIC). Different from
traditional iterative computations, which iteratively update the result based
on the result from the previous iteration, DAIC updates the result by
accumulating the "changes" between iterations. By DAIC, we can process only the
"changes" to avoid the negligible updates. Furthermore, we can perform DAIC
asynchronously to bypass the high-cost synchronous barriers in heterogeneous
distributed environments. Based on the DAIC model, we design and implement an
asynchronous graph processing framework, Maiter. We evaluate Maiter on local
cluster as well as on Amazon EC2 Cloud. The results show that Maiter achieves
as much as 60x speedup over Hadoop and outperforms other state-of-the-art
frameworks.Comment: ScienceCloud 2012, TKDE 201
i2MapReduce: Incremental MapReduce for Mining Evolving Big Data
As new data and updates are constantly arriving, the results of data mining
applications become stale and obsolete over time. Incremental processing is a
promising approach to refreshing mining results. It utilizes previously saved
states to avoid the expense of re-computation from scratch.
In this paper, we propose i2MapReduce, a novel incremental processing
extension to MapReduce, the most widely used framework for mining big data.
Compared with the state-of-the-art work on Incoop, i2MapReduce (i) performs
key-value pair level incremental processing rather than task level
re-computation, (ii) supports not only one-step computation but also more
sophisticated iterative computation, which is widely used in data mining
applications, and (iii) incorporates a set of novel techniques to reduce I/O
overhead for accessing preserved fine-grain computation states. We evaluate
i2MapReduce using a one-step algorithm and three iterative algorithms with
diverse computation characteristics. Experimental results on Amazon EC2 show
significant performance improvements of i2MapReduce compared to both plain and
iterative MapReduce performing re-computation
- …