47,580 research outputs found
A Total Fractional-Order Variation Model for Image Restoration with Non-homogeneous Boundary Conditions and its Numerical Solution
To overcome the weakness of a total variation based model for image
restoration, various high order (typically second order) regularization models
have been proposed and studied recently. In this paper we analyze and test a
fractional-order derivative based total -order variation model, which
can outperform the currently popular high order regularization models. There
exist several previous works using total -order variations for image
restoration; however first no analysis is done yet and second all tested
formulations, differing from each other, utilize the zero Dirichlet boundary
conditions which are not realistic (while non-zero boundary conditions violate
definitions of fractional-order derivatives). This paper first reviews some
results of fractional-order derivatives and then analyzes the theoretical
properties of the proposed total -order variational model rigorously.
It then develops four algorithms for solving the variational problem, one based
on the variational Split-Bregman idea and three based on direct solution of the
discretise-optimization problem. Numerical experiments show that, in terms of
restoration quality and solution efficiency, the proposed model can produce
highly competitive results, for smooth images, to two established high order
models: the mean curvature and the total generalized variation.Comment: 26 page
Dublin City University at CLEF 2007: Cross-Language Speech Retrieval Experiments
The Dublin City University participation in the CLEF 2007 CL-SR English task concentrated primarily on issues of topic translation. Our retrieval system used the BM25F model and pseudo relevance feedback. Topics were translated into English using the Yahoo! BabelFish free online service combined with domain-specific translation lexicons gathered automatically from Wikipedia. We explored alternative topic translation methods using these resources. Our results indicate that extending machine translation tools using automatically generated domainspecific translation lexicons can provide improved CLIR effectiveness for this task
Graph Scaling Cut with L1-Norm for Classification of Hyperspectral Images
In this paper, we propose an L1 normalized graph based dimensionality
reduction method for Hyperspectral images, called as L1-Scaling Cut (L1-SC).
The underlying idea of this method is to generate the optimal projection matrix
by retaining the original distribution of the data. Though L2-norm is generally
preferred for computation, it is sensitive to noise and outliers. However,
L1-norm is robust to them. Therefore, we obtain the optimal projection matrix
by maximizing the ratio of between-class dispersion to within-class dispersion
using L1-norm. Furthermore, an iterative algorithm is described to solve the
optimization problem. The experimental results of the HSI classification
confirm the effectiveness of the proposed L1-SC method on both noisy and
noiseless data.Comment: European Signal Processing Conference 201
- …