4,134 research outputs found

    Learning Theory of Distribution Regression with Neural Networks

    Full text link
    In this paper, we aim at establishing an approximation theory and a learning theory of distribution regression via a fully connected neural network (FNN). In contrast to the classical regression methods, the input variables of distribution regression are probability measures. Then we often need to perform a second-stage sampling process to approximate the actual information of the distribution. On the other hand, the classical neural network structure requires the input variable to be a vector. When the input samples are probability distributions, the traditional deep neural network method cannot be directly used and the difficulty arises for distribution regression. A well-defined neural network structure for distribution inputs is intensively desirable. There is no mathematical model and theoretical analysis on neural network realization of distribution regression. To overcome technical difficulties and address this issue, we establish a novel fully connected neural network framework to realize an approximation theory of functionals defined on the space of Borel probability measures. Furthermore, based on the established functional approximation results, in the hypothesis space induced by the novel FNN structure with distribution inputs, almost optimal learning rates for the proposed distribution regression model up to logarithmic terms are derived via a novel two-stage error decomposition technique

    Towards Free Data Selection with General-Purpose Models

    Full text link
    A desirable data selection algorithm can efficiently choose the most informative samples to maximize the utility of limited annotation budgets. However, current approaches, represented by active learning methods, typically follow a cumbersome pipeline that iterates the time-consuming model training and batch data selection repeatedly. In this paper, we challenge this status quo by designing a distinct data selection pipeline that utilizes existing general-purpose models to select data from various datasets with a single-pass inference without the need for additional training or supervision. A novel free data selection (FreeSel) method is proposed following this new pipeline. Specifically, we define semantic patterns extracted from inter-mediate features of the general-purpose model to capture subtle local information in each image. We then enable the selection of all data samples in a single pass through distance-based sampling at the fine-grained semantic pattern level. FreeSel bypasses the heavy batch selection process, achieving a significant improvement in efficiency and being 530x faster than existing active learning methods. Extensive experiments verify the effectiveness of FreeSel on various computer vision tasks. Our code is available at https://github.com/yichen928/FreeSel.Comment: accepted by NeurIPS 202

    Deep trip generation with graph neural networks for bike sharing system expansion

    Full text link
    Bike sharing is emerging globally as an active, convenient, and sustainable mode of transportation. To plan successful bike-sharing systems (BSSs), many cities start from a small-scale pilot and gradually expand the system to cover more areas. For station-based BSSs, this means planning new stations based on existing ones over time, which requires prediction of the number of trips generated by these new stations across the whole system. Previous studies typically rely on relatively simple regression or machine learning models, which are limited in capturing complex spatial relationships. Despite the growing literature in deep learning methods for travel demand prediction, they are mostly developed for short-term prediction based on time series data, assuming no structural changes to the system. In this study, we focus on the trip generation problem for BSS expansion, and propose a graph neural network (GNN) approach to predicting the station-level demand based on multi-source urban built environment data. Specifically, it constructs multiple localized graphs centered on each target station and uses attention mechanisms to learn the correlation weights between stations. We further illustrate that the proposed approach can be regarded as a generalized spatial regression model, indicating the commonalities between spatial regression and GNNs. The model is evaluated based on realistic experiments using multi-year BSS data from New York City, and the results validate the superior performance of our approach compared to existing methods. We also demonstrate the interpretability of the model for uncovering the effects of built environment features and spatial interactions between stations, which can provide strategic guidance for BSS station location selection and capacity planning

    CARNet:Compression Artifact Reduction for Point Cloud Attribute

    Full text link
    A learning-based adaptive loop filter is developed for the Geometry-based Point Cloud Compression (G-PCC) standard to reduce attribute compression artifacts. The proposed method first generates multiple Most-Probable Sample Offsets (MPSOs) as potential compression distortion approximations, and then linearly weights them for artifact mitigation. As such, we drive the filtered reconstruction as close to the uncompressed PCA as possible. To this end, we devise a Compression Artifact Reduction Network (CARNet) which consists of two consecutive processing phases: MPSOs derivation and MPSOs combination. The MPSOs derivation uses a two-stream network to model local neighborhood variations from direct spatial embedding and frequency-dependent embedding, where sparse convolutions are utilized to best aggregate information from sparsely and irregularly distributed points. The MPSOs combination is guided by the least square error metric to derive weighting coefficients on the fly to further capture content dynamics of input PCAs. The CARNet is implemented as an in-loop filtering tool of the GPCC, where those linear weighting coefficients are encapsulated into the bitstream with negligible bit rate overhead. Experimental results demonstrate significant improvement over the latest GPCC both subjectively and objectively.Comment: 13pages, 8figure
    • …
    corecore