12 research outputs found

    Combination of Optimized Variational Mode Decomposition and Deep Transfer Learning: A Better Fault Diagnosis Approach for Diesel Engines

    No full text
    Extracting features manually and employing preeminent knowledge is overly utilized in methods to conduct fault diagnosis. A diagnosis approach utilizing intelligent methods of the optimized variational mode decomposition and deep transfer learning is proposed in this manuscript to deal with fault diagnosis. Firstly, the variational mode decomposition is optimized by K values of the dispersion entropy to realize an adaptive decomposition and reduce the noise of the signal. Secondly, an image with two dimensions is generated by a vibration signal with one dimension utilizing a short-time Fourier transform, after conducting noise reduction. Then, the ResNet18 network model is used to pre-train the model. Finally, the model transfer method is used to detect faults of a diesel engine. The results show that the proposed method outperforms the deep learning methods available in the literature. Besides, better noise reduction ability and higher diagnostic accuracy are attained

    Fault Diagnosis Method of Planetary Gearbox Based on Compressed Sensing and Transfer Learning

    No full text
    This paper suggests a novel method for diagnosing planetary gearbox faults. It addresses the issue of network bandwidth limitation during wireless data transmission and the problem of relying on expert experience and insufficient training samples in traditional fault diagnosis. The continuous wavelet transform was combined with the AlexNet convolutional neural network using transfer learning and the compressed theory of sense. The original vibration signal was compressed and reconstructed using the compressed sampling orthogonal matching pursuit reconstruction algorithm. A continuous wavelet transform was used to convert the compressed signal into a time–frequency image. The pretrained AlexNet model was selected as the migration object, the network model was fine-tuned and retrained, and the trained AlexNet model was used to diagnose the fault using the model-based migration method. It was demonstrated by the experimental results when the compression ratio CR = 0.5. Compared to other network models, the classification accuracy rate is 97.78%. This method has specific reference value and application prospects and good feature extraction and fault classification capabilities

    Fault Diagnosis Method of Planetary Gearbox Based on Compressed Sensing and Transfer Learning

    No full text
    This paper suggests a novel method for diagnosing planetary gearbox faults. It addresses the issue of network bandwidth limitation during wireless data transmission and the problem of relying on expert experience and insufficient training samples in traditional fault diagnosis. The continuous wavelet transform was combined with the AlexNet convolutional neural network using transfer learning and the compressed theory of sense. The original vibration signal was compressed and reconstructed using the compressed sampling orthogonal matching pursuit reconstruction algorithm. A continuous wavelet transform was used to convert the compressed signal into a time–frequency image. The pretrained AlexNet model was selected as the migration object, the network model was fine-tuned and retrained, and the trained AlexNet model was used to diagnose the fault using the model-based migration method. It was demonstrated by the experimental results when the compression ratio CR = 0.5. Compared to other network models, the classification accuracy rate is 97.78%. This method has specific reference value and application prospects and good feature extraction and fault classification capabilities

    Combination of Optimized Variational Mode Decomposition and Deep Transfer Learning: A Better Fault Diagnosis Approach for Diesel Engines

    No full text
    Extracting features manually and employing preeminent knowledge is overly utilized in methods to conduct fault diagnosis. A diagnosis approach utilizing intelligent methods of the optimized variational mode decomposition and deep transfer learning is proposed in this manuscript to deal with fault diagnosis. Firstly, the variational mode decomposition is optimized by K values of the dispersion entropy to realize an adaptive decomposition and reduce the noise of the signal. Secondly, an image with two dimensions is generated by a vibration signal with one dimension utilizing a short-time Fourier transform, after conducting noise reduction. Then, the ResNet18 network model is used to pre-train the model. Finally, the model transfer method is used to detect faults of a diesel engine. The results show that the proposed method outperforms the deep learning methods available in the literature. Besides, better noise reduction ability and higher diagnostic accuracy are attained

    Research on Diesel Engine Fault Diagnosis Method Based on Stacked Sparse Autoencoder and Support Vector Machine

    No full text
    Due to the relative insufficiencies of conventional time-domain waveform and spectrum analysis in fault diagnosis research, a diesel engine fault diagnosis method based on the Stacked Sparse Autoencoder and the Support Vector Machine is proposed in this study. The method consists of two main steps. The first step is to utilize the Stacked Sparse Autoencoder (SSAE) to reduce the feature dimension of the multi-sensor vibration information; when compared with other dimension reduction methods, this approach can better capture nonlinear features, so as to better cope with dimension reduction. The second step consists of diagnosing faults, implementing the grid search, and K-fold cross-validation to optimize the hyperparameters of the SVM method, which effectively improves the fault classification effect. By conducting a preset failure experiment for the diesel engine, the proposed method achieves an accuracy rate of more than 98%, better engineering application, and promising outcomes

    A Review of Fault Diagnosis Methods for Rotating Machinery Using Infrared Thermography

    No full text
    At present, rotating machinery is widely used in all walks of life and has become the key equipment in many production processes. It is of great significance to strengthen the condition monitoring of rotating machinery, timely diagnose and eliminate faults to ensure the safe and efficient operation of rotating machinery and improve the economic benefits of enterprises. When the state of a rotating machine deteriorates, the thermal energy that is much more than its normal operation will be generated due to the increase in the friction between the components or other factors. Therefore, using the infrared thermal camera to collect the infrared thermal images of rotating machinery and judge the health status of rotating machinery by observing the temperature distribution in the thermal images is often more rapid and effective than other technologies. Nevertheless, after decades of development, the research achievements of infrared thermography (IRT) and its application in various industrial fields are numerous and complex, and there is a lack of systematic sorting and summary of the achievements in this field. Accordingly, this paper summarizes the development and application of IRT as a non-contact and non-invasive tool for equipment condition monitoring and fault diagnosis, and introduces the basic theory of IRT, image processing technology and fault diagnosis methods of rotating machinery in detail. Finally, the review is summarized and some future potential topics are proposed, which will make the subject easier for beginners and non-experts to understand

    Research on Diesel Engine Fault Diagnosis Method Based on Stacked Sparse Autoencoder and Support Vector Machine

    No full text
    Due to the relative insufficiencies of conventional time-domain waveform and spectrum analysis in fault diagnosis research, a diesel engine fault diagnosis method based on the Stacked Sparse Autoencoder and the Support Vector Machine is proposed in this study. The method consists of two main steps. The first step is to utilize the Stacked Sparse Autoencoder (SSAE) to reduce the feature dimension of the multi-sensor vibration information; when compared with other dimension reduction methods, this approach can better capture nonlinear features, so as to better cope with dimension reduction. The second step consists of diagnosing faults, implementing the grid search, and K-fold cross-validation to optimize the hyperparameters of the SVM method, which effectively improves the fault classification effect. By conducting a preset failure experiment for the diesel engine, the proposed method achieves an accuracy rate of more than 98%, better engineering application, and promising outcomes

    A novel method of health indicator construction and remaining useful life prediction based on deep learning

    No full text
    The construction of health indicators (HI) for traditional deep learning requires human training labels and poor interpretability. This paper proposes an HI construction method based on Stacked Sparse Autoencoder (SSAE) and combines SSAE with Long short-term memory (LSTM) network to predict the remaining useful life (RUL). Extracting features from a single domain may result in insufficient feature extraction and cannot comprehensively reflect the degradation status information of mechanical equipment. In order to solve the problem, this article extracts features from time domain, frequency domain, and time-frequency domain to construct a comprehensive original feature set. Based on monotonicity, trendiness, and robustness, the most sensitive features from the original feature set are selected and put into the SSAE network to construct HI for state partitioning, and then LSTM is used for RUL prediction. By comparing with the existing methods, it is proved that the prediction effect of the proposed method in this paper is satisfied

    Combination of VMD Mapping MFCC and LSTM: A New Acoustic Fault Diagnosis Method of Diesel Engine

    No full text
    Diesel engines have a wide range of functions in the industrial and military fields. An urgent problem to be solved is how to diagnose and identify their faults effectively and timely. In this paper, a diesel engine acoustic fault diagnosis method based on variational modal decomposition mapping Mel frequency cepstral coefficients (MFCC) and long-short-term memory network is proposed. Variational mode decomposition (VMD) is used to remove noise from the original signal and differentiate the signal into multiple modes. The sound pressure signals of different modes are mapped to the Mel filter bank in the frequency domain, and then the Mel frequency cepstral coefficients of the respective mode signals are calculated in the mapping range of frequency domain, and the optimized Mel frequency cepstral coefficients are used as the input of long and short time memory network (LSTM) which is trained and verified, and the fault diagnosis model of the diesel engine is obtained. The experimental part compares the fault diagnosis effects of different feature extraction methods, different modal decomposition methods and different classifiers, finally verifying the feasibility and effectiveness of the method proposed in this paper, and providing solutions to the problem of how to realise fault diagnosis using acoustic signals

    Diesel Engine Fault Diagnosis Method Based on Optimized VMD and Improved CNN

    No full text
    The safe operation of diesel engines performs a vital function in industrial production and life. Because diesel engines often work in harsh environmental conditions, they are prone to failure. Therefore, this paper proposes a fault analysis method based on a combination of optimized variational mode decomposition (VMD) and improved convolutional neural networks (CNN) to address the necessary need for preventive maintenance of diesel engines. The authentic vibration sign is first decomposed by using the (VMD) algorithm, then the greatest range of decomposition layers is decided by using scattering entropy and the useful components are preferentially chosen for reconstruction. The continuous wavelet transform (CWT) records preprocessing method is then delivered to radically change the noise-reduced vibration sign into a time-frequency map, which is fed into the CNN for model coaching and extraction of fault features. Finally, fault classification is realized by support vector machine (SVM) with excellent classification performance. Through preset fault experiments on diesel engines, it is established that the technique proposed in this paper can successfully identify fault states, and the classification accuracy is higher than alternative methods
    corecore